The NS5A replication complex inhibitor, BMS-790052, inhibits hepatitis C virus (HCV) replication with picomolar potency in preclinical assays. This potency translated in vivo to a substantial antiviral effect in a single-ascending dose study and a 14-day multiple-ascending dose (MAD) monotherapy study. However, HCV RNA remained detectable in genotype 1a-infected patients at the end of the MAD study. In contrast, viral breakthrough was observed less often in patients infected with genotype 1b, and, in several patients, HCV RNA declined and remained below the level of quantitation (<25 IU/mL) through the duration of treatment. Here, we report on the results of the genotypic and phenotypic analyses of resistant variants in 24 genotype 1-infected patients who received BMS-790052 (1, 10, 30, 60, and 100 mg, once-daily or 30 mg twice-daily) in the 14-day MAD study. Sequence analysis was performed on viral complementary DNA isolated from serum specimens collected at baseline and days 1 (4, 8, and 12 hours), 2, 4, 7, and 14 postdosing. Analyses of the sequence variants (1) established a correlation between resistant variants emerging in vivo with BMS-790052 treatment and those observed in the in vitro replicon system (major substitutions at residues 28, 30, 31, and 93 for genotype 1a and residues 31 and 93 for genotype 1b); (2) determined the prevalence of variants at baseline and the emergence of resistance at different times during dosing; and (3) revealed the resistance profile and replicative ability (i.e., fitness) of the variants. Conclusion: Although resistance emerged during monotherapy with BMS-790052, the substantial anti-HCV effect of this compound makes it an excellent candidate for effective combination therapy. (HEPATOLOGY 2011;54:1924-1935 T he hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a multifunctional protein with key roles in HCV replication. NS5A has also been implicated in the modulation of cellular signaling pathways. 1,2 Because it is required in vivo and in vitro for viral replication and has no known human homologs, NS5A provides an attractive target for therapeutic intervention. 3 BMS-790052 is a potent HCV NS5A replication complex inhibitor, with 50% effective concentration (EC 50 ) values of 9 and 50 pM against genotype 1b and 1a replicons, respectively. 4,5 It is also potent against live virus (genotype 2a, JFH-1), with an EC 50 of $28 pM. 4 BMS-790052 has broad genotype coverage, with EC 50 values ranging from pM to low nM for replicons with NS5A sequences derived from genotype 2a, 3a, 4a, and 5a. 4
The microsomal triglyceride transfer protein (MTP), which catalyses the transport of triglyceride, cholesteryl ester and phospholipid between phospholipid surfaces, is a heterodimer composed of the multifunctional protein, protein disulphide isomerase, and a unique large subunit with an apparent M(r) of 88K (refs 1-3). It is isolated as a soluble protein from the lumen of the microsomal fraction of liver and intestine. The large subunit of MTP was not detectable in four unrelated subjects with abetalipoproteinaemia, a rare autosomal recessive disease characterized by a defect in the assembly or secretion of plasma lipoproteins that contain apolipoprotein B (ref. 6). We report here the isolation and sequencing of complementary DNA encoding the large subunit of MTP. A comparison of this sequence to corresponding genomic sequences from two abetalipoproteinaemic subjects revealed a homozygous frameshift mutation in one subject and a homozygous nonsense mutation in the other. The results indicate that a defect in the gene for the large subunit of MTP is the proximal cause of abetalipoproteinaemia in these two subjects, and that MTP is required for the secretion of plasma lipoproteins that contain apolipoprotein B.
Neuropeptide Y (NPY)1 is a 36-amino acid peptide amide that is widely distributed in the central and peripheral nervous systems. It belongs to a family of homologous peptides including the gut peptide YY (PYY) and pancreatic polypeptide. NPY has been highly conserved throughout evolution and is therefore thought to be an important hormone/neurotransmitter. Centrally its effects include blood pressure regulation, memory enhancement, anxiolysis/sedation, and increased food intake, and in the periphery it affects vascular and other smooth muscle activity, intestinal electrolyte secretion, and urinary sodium excretion (1, 2).Heterogeneity among NPY receptors has been observed. Based on the rank order of potency of NPY and related peptides to displace ]NPY and low affinity for C-terminal fragments of NPY such as NPY . In contrast, the Y2 receptor subtype has high affinity for NPY Pro 34 ]NPY. The Y3 subtype has a low affinity for PYY. The existence of a fourth receptor, Y1a or Y4, that is important in the feeding response has been hypothesized (2).and low affinity for [Leu 31 ,The NPY Y1 receptor has been cloned from rat forebrain (4), human fetal brain (5), bovine hypothalamus, 2 and murine genomic DNA (6). It belongs to the superfamily of G-proteincoupled receptors and appears to couple to more than one second messenger systems (5, 7). To date the cloning of a Y2 receptor has not been reported. Attempts to isolate a Y2 cDNA using homology to the Y1 cDNA have not been successful. Here we report the isolation by expression cloning (8) of a cDNA encoding a human NPY receptor displaying a pharmacology typical of a Y2 receptor. The clone has been functionally expressed in CHO cells where its activation causes mobilization of calcium and inhibition of forskolin-stimulated cAMP accumulation.
Squalene synthetase (farnesyl diphosphate:farnesyl diphosphate farnesyltransferase; EC 2.5.1.21) is thought to represent a major control point of isoprene and sterol biosynthesis in eukaryotes. We demonstrate structural and functional conservation between the enzymes from humans, a budding yeast (Saccharomyces cerevisiae), and a fission yeast (Schizosaccharomyces pombe). The amino acid sequences of the human and S. pombe proteins deduced from cloned cDNAs were compared to those of the known S. cerevisiae protein. All are predicted to encode C-terminal membrane-spanning proteins of approximately 50 kDa with similar hydropathy profiles. Extensive sequence conservation exists in regions of the enzyme proposed to interact with its prenyl substrates (i.e., two farnesyl diphosphate molecules). Many of the highly conserved regions are also present in phytoene and prephytoene diphosphate synthetases, enzymes which catalyze prenyl substrate condensation reactions analogous to that of squalene synthetase. Expression of cDNA clones encoding S. pombe or hybrid human-S. cerevisiae squalene synthetases reversed the ergosterol requirement of S. cerevisiae cells bearing ERG9 gene disruptions, showing that these enzymes can functionally replace the S. cerevisiae enzyme.
Using CRISPR/Cas9 delivered as a RNA modality in conjunction with a lipid specifically formulated for large RNA molecules, we demonstrate that homology directed repair (HDR) rates between 20–40% can be achieved in induced pluripotent stem cells (iPSC). Furthermore, low HDR rates (between 1–20%) can be enhanced two- to ten-fold in both iPSCs and HEK293 cells by ‘cold shocking’ cells at 32 °C for 24–48 hours following transfection. This method can also increases the proportion of loci that have undergone complete sequence conversion across the donor sequence, or ‘perfect HDR’, as opposed to partial sequence conversion where nucleotides more distal to the CRISPR cut site are less efficiently incorporated (‘partial HDR’). We demonstrate that the structure of the single-stranded DNA oligo donor can influence the fidelity of HDR, with oligos symmetric with respect to the CRISPR cleavage site and complementary to the target strand being more efficient at directing ‘perfect HDR’ compared to asymmetric non-target strand complementary oligos. Our protocol represents an efficient method for making CRISPR-mediated, specific DNA sequence changes within the genome that will facilitate the rapid generation of genetic models of human disease in iPSCs as well as other genome engineered cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.