The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra ϫ maximowiczii) expressing a mouse Orn decarboxylase (odc) cDNA. The transgenic cells showed elevated levels of mouse ODC enzyme activity, severalfold higher amounts of putrescine, a small increase in spermidine, and a small reduction in spermine as compared with NT cells. The conversion of labeled ornithine (Orn) into putrescine was significantly higher in the transgenic than the NT cells. Whereas exogenously supplied Orn caused an increase in cellular putrescine in both cell lines, arginine at high concentrations was inhibitory to putrescine accumulation. The addition of urea and glutamine had no effect on polyamines in either of the cell lines. Inhibition of glutamine synthetase by methionine sulfoximine led to a substantial reduction in putrescine and spermidine in both cell lines. The results show that: (a) Transgenic expression of a heterologous odc gene can be used to modulate putrescine metabolism in plant cells, (b) accumulation of putrescine in high amounts does not affect the native arginine decarboxylase activity, (c) Orn biosynthesis occurs primarily from glutamine/glutamate and not from catabolic breakdown of arginine, (d) Orn biosynthesis may become a limiting factor for putrescine production in the odc transgenic cells, and (e) assimilation of nitrogen into glutamine keeps pace with an increased demand for its use for putrescine production.Polyamines (putrescine, spermidine, and spermine) are low M r polycations found in all living organisms. At the cellular level, polyamines are involved in DNA and protein synthesis, stabilization of membranes, scavenging of free radicals, and modulation of enzyme activities (Minocha and
Matrix metalloproteinases (MMPs) are important for developmental tissue remodeling and for the inflammatory response. Although the vertebrate MMP family is large and functionally redundant, the fruitfly Drosophila melanogaster has only two MMPs, both essential genes. Our previous work demonstrated that Mmp1 is required for growth of the tracheal system, and we suggested that the mutant phenotype resulted from aberrant persistence of cell adhesion to the extracellular matrix. Here we report the identification of NijA, a transmembrane protein whose vertebrate homologs regulate cell adhesion, as a two-hybrid binding partner for Mmp1. The binding of Mmp1 and NijA was confirmed by coimmunoprecipitation of endogenous proteins from flies, and the endogenous proteins were found to colocalize at the tracheal cell surface in larvae. When NijA is expressed in S2 cells, they lose adhesion to surfaces; this adhesion-loss phenotype is dependent on the expression and catalytic activity of Mmp1. Our data indicate that Mmp1 releases the N-terminal extracellular domain of NijA. This liberated ectodomain promotes the loss of cell adhesion in a cell-nonautonomous manner. We suggest that tracheal cell adhesion is regulated by a novel mechanism utilizing an MMP and a ninjurin family member.
Organ size typically increases dramatically during juvenile growth. This growth presents a fundamental tension, as organs need resiliency to resist stresses while still maintaining plasticity to accommodate growth. Extracellular matrix (ECM) is central to providing resiliency, but how ECM is remodeled to accommodate growth is poorly understood. We investigated remodeling of Drosophila respiratory tubes (tracheae) that elongate continually during larval growth, despite being lined with a rigid cuticular ECM. Cuticle is initially deposited with a characteristic pattern of repeating ridges and valleys known as taenidia. We find that for tubes to elongate, the extracellular protease Mmp1 is required for expansion of ECM between the taenidial ridges during each inter-molt period. Mmp1 protein localizes in periodically-spaced puncta that are in register with the taenidial spacing. Mmp1 also degrades old cuticle at molts, promotes apical membrane expansion in larval tracheae, and promotes tube elongation in embryonic tracheae. Whereas work in other developmental systems has demonstrated that MMPs are required for axial elongation occurring in localized growth zones, this study demonstrates that MMPs can also mediate interstitial matrix remodeling during growth of an organ system.
Human matrix metalloproteinases (MMPs) are believed to contribute to tumor progression. Therapies based on inhibiting the catalytic domain of MMPs have been unsuccessful, but these studies raise the question of whether other MMP domains might be appropriate targets. The genetic dissection of domain function has been stymied in mouse because there are 24 related and partially redundant MMP genes in the mouse genome. Here, we present a genetic dissection of the functions of the hemopexin and catalytic domains of a canonical MMP in Drosophila melanogaster, an organism with only 2 MMPs that function nonredundantly. We compare the phenotypes of Mmp1 null alleles with alleles that have specific hemopexin domain lesions, and we also examine phenotypes of dominant-negative mutants. We find that, although the catalytic domain appears to be required for all MMP functions including extracellular matrix remodeling of the tracheal system, the hemopexin domain is required specifically for tissue invasion events later in metamorphosis but not for tracheal remodeling. Thus, we find that this MMP hemopexin domain has an apparent specialization for tissue invasion events, a finding with potential implications for inhibitor therapies.cancer ͉ genetics ͉ tissue remodeling
The etiology of encephalitis and meningitis, serious diseases of the central nervous system (CNS), in most cases remains unknown. The importance of establishing a diagnosis however, becomes even more important as advances are made in effective therapy. Molecular methods of detection, in particular, PCR, are being used routinely and have established a place in the arsenal of tools for diagnosis of CNS infections. In this study a viral etiological agent was detected by PCR in 340 of the total 2,357 specimens from patients who exhibited symptoms of encephalitis or meningitis. The detection rate increased from 8.9% during the first year of the study to 14.8% during the second year of the study with improved methodology and an expanded panel of viral agents. Methods were enhanced by developing real-time PCR assays (some multiplexed), using increased automation, superior nucleic acid extraction, and reverse transcription (RT) methods, and incorporation of an internal extraction control. Additionally, adenovirus and human herpes virus 6 (HHV-6) were added to the original panel of 10 viruses that included enteroviruses, herpesviruses, and arboviruses. The most common viruses detected were enteroviruses (129; 5.5%), Epstein-Barr virus (EBV) (85; 3.6%), herpes simplex viruses (HSVs) 1 and 2 (67; 2.8%), and varicella zoster virus (VZV) (44; 1.9%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.