Cystine is a disulphide amino acid that is normally generated within the lysosomes through lysosomal-based protein degradation and via extracellular uptake of free cystine. In the autosomal recessive disorder, cystinosis, a defect in the CTNS gene results in excessive lysosomal accumulation of cystine, with early kidney failure a hallmark of the disease. Previously, we demonstrated that silencing of the CTNS gene in kidney proximal tubular epithelial cells (PTECs) resulted in an increase in intracellular cystine concentration coupled with a dramatic reduction in the total GSH content. Because of the crucial role of GSH in maintaining the redox status and viability of kidney PTECs, we assessed the effects of CTNS knockdown-induced lysosomal cystine accumulation on intracellular reactive oxygen species (ROS) production, activity of classical redox-sensitive genes, mitochondrial integrity and cell viability. Our results showed that lysosomal cystine accumulation increased ROS production and solicitation to oxidative stress (OS). This was associated with the induction of classical redox-sensitive proteins, NF-κB, NRF2, HSP32 and HSP70. Cystine-loaded PTECs also displayed depolarized mitochondria, reduced ATP content and augmented apoptosis. Treatment of CTNS knockdown PTECs with the cystine-depleting agent cysteamine resulted in the normalization of OS index, increased GSH and ATP content, and preservation of cell viability. Taken together, the alterations observed in cystinotic cells may represent different facets of a cascade leading to tubular dysfunction and, in combination with cysteamine therapy, may offer a novel link for the attenuation of renal injury and preservation of functions of other organs affected in cystinosis.
New findingsr What is the central question of this study?Are the molecular and cellular consequences of cystine dimethylester loading different from an alternative and more specific model of the cystinotic kidney proximal tubule epithelial cell, obtained by CTNS gene silencing. r What is the main finding and its importance?Using a human-derived kidney proximal tubular cell line, HK-2, we demonstrated that cystine dimethylester loading induces detrimental effects independent of lysosomal cystine accumulation. CTNS gene silencing, which resulted in comparable levels of cystine accumulation, evidence of oxidative stress and reduced ATP concentration but unaltered ATP generation capacity, represents a more useful model for investigating biochemical alterations in cystinosis.Using the cystine dimethylester (CDME) loading technique to achieve elevated lysosomal cystine levels, ATP depletion has previously been postulated to be responsible for the renal dysfunction in cystinosis, a genetic disorder characterized by an excessive accumulation of cystine in the lysosomes. However, this is unlikely to be the sole factor responsible for the complexity of cell stress associated with cystinosis. Moreover, CDME has been shown to induce a direct toxic effect on mitochondrial ATP generation. Using a human-derived proximal tubular epithelial cell line, we compared the effects of CDME loading with small interfering RNA-mediated cystinosin, lysosomal cystine transporter (CTNS) gene silencing on glutathione redox status, reactive oxygen species levels, oxidative stress index, antioxidant enzyme activities and ATP generating capacity. The CDME-loaded cells displayed increased total glutathione content, extensive superoxide depletion, augmented oxidative stress index, decreased catalase activity, normal superoxide dismutase activity and compromised ATP generation. In contrast, cells subjected to CTNS gene inhibition demonstrated decreased total glutathione content, increased superoxide levels, unaltered oxidative stress index, unaltered catalase activity, induction of superoxide dismutase activity and normal ATP generation. Our data indicate that many CDME-induced effects are independent of lysosomal cystine accumulation, which further underscores the limited value of CDME loading for studying the pathogenesis of cystinosis. CTNS gene inhibition, which results C
Key pointsr In cystinosis, a lysosomal storage disorder, an altered redox state has been suggested as contributing to cellular dysfunction.r Ctns gene knockdown in a pancreatic β-cell line caused increased cystine levels. r Attenuated nutrient stimulated insulin secretion was observed after Ctns knockdown which may have been caused by an increase in oxidative stress.r Oxidative stress may reduce ATP production in pancreatic β-cells resulting in attenuated insulin release.r The redox-sensitive transcription factor NF-κB was activated after Ctns knockdown which may contribute to the increased incidence of apoptosis. AbstractThe pancreatic β-cell has reduced antioxidant defences making it more susceptible to oxidative stress. In cystinosis, a lysosomal storage disorder, an altered redox state may contribute to cellular dysfunction. This rare disease is caused by an abnormal lysosomal cystine transporter, cystinosin, which causes excessive accumulation of cystine in the lysosome. Cystinosis associated kidney damage and dysfunction leads to the Fanconi syndrome and ultimately end-stage renal disease. Following kidney transplant, cystine accumulation in other organs including the pancreas leads to multi-organ dysfunction. In this study, a Ctns gene knockdown model of cystinosis was developed in the BRIN-BD11 rat clonal pancreatic β-cell line using Ctns-targeting siRNA. Additionally there was reduced cystinosin expression, while cell cystine levels were similarly elevated to the cystinotic state. Decreased levels of chronic (24 h) and acute (20 min) nutrient-stimulated insulin secretion were observed. This decrease may be due to depressed ATP generation particularly from glycolysis. Increased ATP production and the ATP/ADP ratio are essential for insulin secretion. Oxidised glutathione levels were augmented, resulting in a lower [glutathione/oxidised glutathione] redox potential. Additionally, the mitochondrial membrane potential was reduced, apoptosis levels were elevated, as were markers of oxidative stress, including reactive oxygen species, superoxide and hydrogen peroxide. Furthermore, the basal and activated phosphorylated forms of the redox-sensitive transcription factor NF-κB were increased in cells with silenced Ctns. From this study, the cystinotic-like pancreatic β-cell model demonstrated that the altered oxidative status of the cell, resulted in depressed mitochondrial function and pathways of ATP production, causing reduced nutrient-stimulated insulin secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.