Metabolomics is a rapidly expanding field of systems biology that is gaining significant attention in many areas of biomedical research. Also known as metabonomics, it comprises the analysis of all small molecules or metabolites that are present within an organism or a specific compartment of the body. Metabolite detection and quantification provide a valuable addition to genomics and proteomics and give unique insights into metabolic changes that occur in tangent to alterations in gene and protein activity that are associated with disease. As a novel approach to understanding disease, metabolomics provides a “snapshot” in time of all metabolites present in a biological sample such as whole blood, plasma, serum, urine, and many other specimens that may be obtained from either patients or experimental models. In this article, we review the burgeoning field of metabolomics in its application to acute lung diseases, specifically pneumonia and acute respiratory disease syndrome (ARDS). We also discuss the potential applications of metabolomics for monitoring exposure to aerosolized environmental toxins. Recent reports have suggested that metabolomics analysis using nuclear magnetic resonance (NMR) and mass spectrometry (MS) approaches may provide clinicians with the opportunity to identify new biomarkers that may predict progression to more severe disease, such as sepsis, which kills many patients each year. In addition, metabolomics may provide more detailed phenotyping of patient heterogeneity, which is needed to achieve the goal of precision medicine. However, although several experimental and clinical metabolomics studies have been conducted assessing the application of the science to acute lung diseases, only incremental progress has been made. Specifically, little is known about the metabolic phenotypes of these illnesses. These data are needed to substantiate metabolomics biomarker credentials so that clinicians can employ them for clinical decision-making and investigators can use them to design clinical trials.
Objectives There is limited knowledge of exposure to polycyclic aromatic hydrocarbons (PAHs) in wildland firefighters, or of the effectiveness of interventions to reduce this. This study of wildland firefighters assessed whether PAHs were present and considered respiratory protection and enhanced skin hygiene as possible interventions. Methods 1-Hydroxypyrene (1-HP) was measured in urine samples collected pre-shift, post-shift, and next morning from wildland firefighters in Alberta and British Columbia. Skin wipes, collected pre- and post-shift, were analysed for eight PAHs. Breathing zone air samples were analysed for 11 PAHs. As pilot interventions, participants were randomized to either normal or enhanced skin hygiene. A sample of volunteers was assigned to a disposable N95 mask or a half facepiece mask with P100 organic vapour cartridge. Participants completed a brief questionnaire on activities post-shift and respiratory symptoms. Results Non-smoking firefighters (66 male and 20 female) were recruited from 11 fire crews. Air sampling pumps were carried for the full shift by 28 firefighters, 25 firefighters wore masks (14 N95 and 11 P100); 42 were assigned to the enhanced skin hygiene intervention. Sixty had hot spotting as their main task. Air monitoring identified PAHs (benzo(b,j,k)fluoranthene in particulates, phenanthrene in the gaseous phase) for 6 of the 11 crews. PAHs (largely naphthalene) were found post-shift on 40/84 skin wipes from the hand and 38/84 from jaw/throat. The mean increase in 1-HP in urine samples collected after the shift (compared with samples collected before the shift) was 66 ng g−1 creatinine (P < 0.001) with an increase over the shift found for 76% of participants. 1-HP in next morning urine samples was significantly lower than at the end of shift (a reduction of 39.3 ng g−1: P < 0.001). The amount of naphthalene on skin wipes was greater at the end of the shift (post) than at the start (pre). The mean post–pre weight difference of naphthalene on skin wipes taken from the hand was 0.96 ng wipe−1 (P = 0.01) and from the jaw/throat 1.28 ng wipe−1 (P = 0.002). The enhanced skin hygiene intervention lead to a larger reduction in 1-HP between end of shift and next morning urine samples but only for those with naphthalene on skin wipes at the end of shift. The difference in 1-HP concentration in urine samples collected before and after the shift was reduced for those wearing a mask (linear tend P = 0.063, one-sided). In multivariable models, 1-HP at end of shift was related to gaseous phase phenanthrene, estimated from air sampling [β = 318.2, 95% confidence interval (CI) 67.1–569.2]. Naphthalene on hand skin wipes reflected work in hot spotting during the shift (β = 0.53, 95% CI 0.22–0.86). Conclusions This study provided evidence of PAHs in the air and on the skin of many, but not all, fire crew. Absorbed PAHs, reflected in 1-HP in urine, increased over the shift. Results from the pilot interventions suggest that enhanced skin hygiene would reduce absorption post fire where PAHs had been accumulated on the skin, and that masks could be effective in reducing PAH inhalation exposure. Interventions to reduce PAH absorption are supported by the pilot work reported here and warrant further evaluation across a full fire season.
A mass balance approach, based essentially on the reconstruction of daily fluxes and circumscribed by strict error calculations, was designed to quantify the main mercury sources for the St. Lawrence and its tributaries, which constitute a large river system. High-frequency samplings were performed over an 18-month period (1995−1996) at the main water inputs and the mouth of the river. Minor tributaries and the Montreal effluent were also sampled. This strategy allowed models to be obtained that relate mercury concentrations in solution and in particles to the hydrological regime. The calculated budget was balanced relative to the calculated errors of the estimates. Gross mercury export from the river was found to be 5.9 kmol yr-1 (73% as particulate). Tributaries and internal erosion of the river contributed equally for a total of 75% of this gross load, whereas the Upper St. Lawrence River, which is almost exclusively composed of Lake Ontario waters, accounted for less than 10%, and inventoried anthropogenic point sources accounted for about 5%. Dissolved mercury was mainly from north shore tributaries, and particulate mercury was largely from erosion of the river bed and banks. On the basis of the present results as well as estimates of atmospheric deposition from the literature it can be inferred that at least 88% of deposited mercury was retained in the watersheds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.