Acid mine drainage (AMD) generated from the mining industry elevates environmental concerns due to the pollution and contamination it causes to bodies of water. Over the years, passive treatment of AMD using alkalinity-generating materials have been widely studied with pH neutralization as its commonly observed mechanism. During the treatment process, heavy metal removal is also promoted by precipitation due to pH change or through adsorption facilitated by the mineral component of the materials. In this study, four materials were used and investigated: (1) a low grade ore (LGO) made up of goethite, calcium oxide, and manganese aluminum oxide (2–3) limestone and concrete aggregates (CA) composed of calcite, and (4) fly ash consisting of quartz, hematite, and magnetite. The performance of each alkalinity-generating agent at varying AMD/media ratios was based on the change in pH, total dissolved solids (TDS), oxidation reduction potential (EH); and heavy metals (Fe, Ni, and Al) removal and sulfate concentration reduction. Concrete aggregate displayed the most significant effect in treating AMD after raising the pH to 12.42 and removing 99% Fe, 99% Ni, 96% Al, and 57% sulfates. Afterwards, the efficiency of CA at various particle sizes were evaluated over 1 h. The smallest range at 2.00–3.35mm was observed to be most effective after 60 min, raising the pH to 6.78 and reducing 94% Fe, 78% Ni, and 92% Al, but only 28% sulfates. Larger particles of CA were able to remove higher amounts of sulfate up to 57%, similar to the jar test. Overall, CA is an effective treatment media for neutralization; however, its performance can be complemented by a second media for heavy metal and sulfate removal.
Acid mine drainage (AMD) is a serious environmental problem caused by the weathering of sulfur-rich minerals found in mine sites, typically pyrite. Passive treatment methods have been extensively studied exploring various materials and treatment systems. Limestone is typically used as neutralizing media through open channels or anoxic limestone drains. However, the armouring that occurs when heavy metals precipitate on the surface restricts the lifespan of limestone treatment systems to 15-20 years. Goethite has been characterized to be a good adsorbent of heavy metals found in wastewater. It is abundant in a layer of nickel laterite deposit which are considered mine wastes due to the low amount of nickel present. This study investigates the performance of locally available nickel laterite ore rock, limestone, fly ash, and cement waste as media for AMD neutralization. The treatment efficiency are evaluated based on the physiochemical properties of the AMD, namely: pH, redox potential (ORP), conductivity, total dissolved solids (TDS), and dissolved oxygen (DO).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.