Electroreduction of CO2 to CO powered by renewable electricity is a possible alternative to synthesizing CO from fossil fuel. However, it is very hard to achieve high current density at high faradaic efficiency (FE). Here, the first use of N,P‐co‐doped carbon aerogels (NPCA) to boost CO2 reduction to CO is presented. The FE of CO could reach 99.1 % with a partial current density of −143.6 mA cm−2, which is one of the highest current densities to date. NPCA has higher electrochemical active area and overall electronic conductivity than that of N‐ or P‐doped carbon aerogels, which favors electron transfer from CO2 to its radical anion or other key intermediates. By control experiments and theoretical calculations, it is found that the pyridinic N was very active for CO2 reduction to CO, and co‐doping of P with N hinder the hydrogen evolution reaction (HER) significantly, and thus the both current density and FE are very high.
Conspectus The severity of global warming necessitates urgent CO2 mitigation strategies. Notably, CO2 is a cheap, abundant, and renewable carbon resource, and its chemical transformation has attracted great attention from society. Because CO2 is in the highest oxidation state of the C atom, the hydrogenation of CO2 is the basic means of converting it to organic chemicals. With the rapid development of H2 generation by water splitting using electricity from renewable resources, reactions using CO2 and H2 have become increasingly important. In the past few decades, the advances of CO2 hydrogenation have mostly been focused on the synthesis of C1 products, such as CO, formic acid and its derivatives, methanol, and methane. In many cases, the chemicals with two or more carbons (C2+) are more important. However, the synthesis of C2+ chemicals from CO2 and H2 is much more difficult because it involves controlled hydrogenation and simultaneous C–C bond formation. Obviously, investigations on this topic are of great scientific and practical significance. In recent years, we have been targeting this issue and have successfully synthesized the basic C2+ chemicals including carboxylic acids, alcohols, and liquid hydrocarbons, during which we discovered several important new reactions and new reaction pathways. In this Account, we systematically present our work and insights in a broad context with other related reports. We discovered a reaction of acetic acid production from methanol, CO2 and H2, which is different from the well-known methanol carbonylation. We also discovered a reaction of C3+ carboxylic acids syntheses using ethers to react with CO2 and H2, which proceeds via olefins as intermediates. Following the new reaction, we realized the synthesis of acetamide by introducing various amines, which may inspire the development of further catalytic schemes for preparing a variety of special chemicals using carbon dioxide as a building block. We designed a series of homogeneous catalysts to accelerate the production of C2+ alcohols via CO2 hydrogenation. In the heterogeneously catalyzed CO2 hydrogenation, we discovered the role of water in enhancing the synthesis of C2+ alcohols. We also developed a series of routes for ethanol production using CO2 and H2 to react with some substrates, such as methanol, dimethyl ether, aryl methyl ether, lignin, or paraformaldehyde. We designed a catalyst that can directly hydrogenate CO2 to C5+ hydrocarbons at 200 °C, not via the traditional CO or methanol intermediates. We also designed a route to couple homogeneous and heterogeneous catalysis, where exceptional results are achieved at 180 °C.
Synthesis of higher carboxylic acids using CO2 and H2 is of great importance, because CO2 is an attractive renewable C1 resource and H2 is a cheap and clean reductant. Herein we report a route to produce higher carboxylic acids via reaction of ethers with CO2 and H2. We show that the reaction can be efficiently catalyzed by an IrI4 catalyst with LiI as promoter at 170 °C, 5 MPa of CO2 and 2 MPa of H2. The catalytic system applies to various ether substrates. The mechanistic study indicates that the ethers are converted to olefins, which are further transformed into alkyl iodides. The higher carboxylic acids are produced by carbonylation of alkyl iodides with CO generated in situ via RWGS reaction. This report offers an alternative strategy of higher carboxylic acid synthesis and CO2 transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.