Directed evolution of enzymes toward improved catalytic performance has become a powerful tool in protein engineering. To be effective, a directed evolution campaign requires the use of high-throughput screening. In this study we describe the development of a high-throughput lysis-free procedure to screen for improved sulfatase activity by combining microdroplet-based single-variant activity sorting with E. coli autodisplay. For the first step in a 4-step screening procedure we quantitatively screened >10 5 variants of the homodimeric arylsulfatase from Silicibacter pomeroyi (SpAS1), displayed on the E. coli cell surface, for improved sulfatase activity using fluorescence activated droplet sorting. Display of the sulfatase variants on living E. coli cells ensured the continuous linkage of genotype and phenotype during droplet sorting and allowed for direct recovery by simple regrowth of the sorted cells. The use of autodisplay on living cells simplified and reduced the degree of liquid handling during all steps in the screening procedure to the single event of simply mixing substrate and cells. The percentage of apparent improved variants was enriched >10-fold as a result of droplet sorting. We ultimately identified 25 SpAS1-variants with improved performance toward 4-nitrophenyl sulfate (up to 6.2-fold) and/or fluorescein disulfate (up to 30-fold). In SpAS1 variants with improved performance toward the bulky fluorescein disulfate, many of the beneficial mutations occur in residues that form hydrogen bonds between α-helices in the C-terminal oligomerization region, suggesting a non-trivial, previously unknown role for the dimer interface in shaping the substrate binding site of SpAS1.
Directed evolution of enzymes toward improved catalytic performance has become a powerful tool in protein engineering. To be effective, a directed evolution campaign requires the use of high-throughput screening. In this study we describe the development of a high-throughput lysis-free procedure to screen for improved sulfatase activity by combining microdroplet-based single-variant activity sorting with E. coli autodisplay. For the first step in a 4-step screening procedure we quantitatively screened >10 5 variants of the homodimeric arylsulfatase from Silicibacter pomeroyi (SpAS1), displayed on the E. coli cell surface, for improved sulfatase activity using fluorescence activated droplet sorting. Display of the sulfatase variants on living E. coli cells ensured the continuous linkage of genotype and phenotype during droplet sorting and allowed for direct recovery by simple regrowth of the sorted cells. The use of autodisplay on living cells simplified and reduced the degree of liquid handling during all steps in the screening procedure to the single event of simply mixing substrate and cells. The percentage of apparent improved variants was enriched >10-fold as a result of droplet sorting. We ultimately identified 25 SpAS1-variants with improved performance toward 4-nitrophenyl sulfate (up to 6.2-fold) and/or fluorescein disulfate (up to 30-fold). In SpAS1 variants with improved performance toward the bulky fluorescein disulfate, many of the beneficial mutations occur in residues that form hydrogen bonds between α-helices in the C-terminal oligomerization region, suggesting a non-trivial, previously unknown role for the dimer interface in shaping the substrate binding site of SpAS1.
Directed evolution (DE) is a widely used method for improving the function of biomolecules via multiple rounds of mutation and selection. Microfluidic droplets have emerged as an important means to screen the large libraries needed for DE, but this approach was so far partially limited by the need to lyse cells, recover DNA, and retransform into cells for the next round, neces-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.