Summary People find it easier to learn about topics that interest them, but little is known about the mechanisms by which intrinsic motivational states affect learning. We used functional magnetic resonance imaging to investigate how curiosity (intrinsic motivation to learn) influences memory. In both immediate and one-day delayed memory tests, participants showed improved memory for information that they were curious about, and also for incidental material learned during states of high curiosity. FMRI results revealed that activity in the midbrain and the nucleus accumbens was enhanced during states of high curiosity. Importantly, individual variability in curiosity-driven memory benefits for incidental material was supported by anticipatory activity in the midbrain and hippocampus and by functional connectivity between these regions. These findings suggest a link between the mechanisms supporting extrinsic reward motivation and intrinsic curiosity and highlight the importance of stimulating curiosity in order to create more effective learning experiences.
Motivation enhances memory by increasing hippocampal engagement during encoding. However, whether such increased hippocampal activation reflects encoding of the value of highly rewarding events per se is less understood. Here, using a monetary incentive encoding task with a novel manipulation, we tested in humans whether the hippocampus represents abstract reward value, independent of perceptual content. During functional MRI scanning, men and women studied object pairs, each preceded by a monetary reward cue indicating the amount of money they would receive if they successfully remembered the object pair at test. Reward cues varied on both the level of reward (penny, dime, and dollar) and visual form (picture or word) across trials to dissociate hippocampal responses to reward value from those reflecting the perceptual properties of the cues. Behaviorally, participants remembered pairs associated with the high reward (dollar) more often than pairs associated with lower rewards. Neural pattern-similarity analysis revealed that hippocampal and parahippocampal cortex activation patterns discriminated between cues of different value regardless of their visual form, and that hippocampal discrimination of value was most pronounced in participants who showed the greatest behavioral sensitivity to reward. Strikingly, hippocampal patterns were most distinct for reward cues that differed in value but had similar visual appearance, consistent with theoretical proposals of hippocampal-pattern differentiation of competing representations. Our data illustrate how contextual representations within the hippocampus go beyond space and time to include information about the motivational salience of events, with hippocampal reward coding tracking the motivational impact on later memory.
On 18 July 2014, the National Institute of Mental Health in collaboration with ViiV Health Care and Boehringer Ingelheim supported a symposium on HIV eradication and what it meant for the brain. The symposium was an affiliated event to the 20th International AIDS Conference. The meeting was held in Melbourne, Australia, and brought together investigators currently working on HIV eradication together with investigators who are working on the neurological complications of HIV. The purpose of the meeting was to bring the two fields of HIV eradication and HIV neurology together to foster dialogue and cross talk to move the eradication field forward in the context of issues relating to the brain as a potential reservoir of HIV. The outcomes of the symposium were that there was substantive but not definitive evidence for the brain as an HIV reservoir that will provide a challenge to HIV eradication. Secondly, the brain as a clinically significant reservoir for HIV is not necessarily present in all patients. Consequently, there is an urgent need for the development of biomarkers to identify and quantify the HIV reservoir in the brain. Lastly, when designing and developing eradication strategies, it is critical that approaches to target the brain reservoir be included.
An individual’s reputation and group membership can produce automatic judgments and behaviors toward that individual. Whether an individual’s social reputation impacts interactions with affiliates has yet to be demonstrated. We tested the hypothesis that during initial encounters with others, existing knowledge of their social network guides behavior toward them. Participants learned reputations (cooperate, defect, or equal mix) for virtual players through an iterated economic game (EG). Then, participants learned one novel friend for each player. The critical question was how participants treated the friends in a single-shot EG after the friend-learning phase. Participants tended to cooperate with friends of cooperators and defect on friends of defectors, indicative of a decision making bias based on memory for social affiliations. Interestingly, participants’ explicit predictions of the friends’ future behavior showed no such bias. Moreover, the bias to defect on friends of defectors was enhanced when affiliations were learned in a social context; participants who learned to associate novel faces with player faces during reinforcement learning did not show reputation-based bias for associates of defectors during single-shot EG. These data indicate that when faced with risky social decisions, memories of social connections influence behavior implicitly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.