Surface plasma oscillations in metallic particles as well as in thin metallic films have been studied extensively in the past decades. New features regarding surface plasma excitations are, however, constantly discovered, leading, for example, to surface-enhanced Raman scattering studies and enhanced optical transmission though metal films with nanohole arrays. In the present work, the role of a metallic substrate is examined in two cases, one involving an overcoat of dielectric nanoparticles and the other an overcoat of metallic nanoparticles. Theoretical results are obtained by modeling the nanoparticles as forming a two-dimensional, hexagonal lattice of spheres. The scattered electromagnetic field is then calculated using a variant of the Green function method. Comparison with experimental results is made for nanoparticles of tungsten oxide and tin oxide deposited on either gold or silver substrates, giving qualitative agreement on the extra absorption observed when the dielectric nanoparticles are added to the metallic surfaces. Such absorption would be attributed to the mirror image effects between the particles and the substrate. On the other hand, calculations of the optical properties of silver or gold nanoparticle arrays on a gold or a silver substrate demonstrate very interesting features in the spectral region from 400 to 1,000 nm. Interactions between the nanoparticle arrays surface plasmons and their images in the metallic substrate would be responsible for the red shift observed in the absorption resonance. Moreover, effects of particle size and ambient index of refraction are studied, showing a great potential for applications in biosensing with structures consisting of metallic nanoparticle arrays on metallic substrates.
An approximate treatment, describing the influence of a dielectric substrate on the optical behavior of a granular surface, is reported. It shows that discrepancies between experimental results and predictions mainly based upon the Maxwell Garnett theory [Philos. Trans. R. Soc. London 203, 385 (1904); 205A, 237 (1906)] cannot be interpreted as substrate-related effects. The magnitudes and locations of the multiple images of the unperturbed dipole of a small metallic sphere have been carried out in an approximate, though reliable, way in the presence of polarizing fields both parallel and perpendicular to the substrate. The resulting dipole is introduced in a long-known optical model, describing a granular surface as a planar array of equal dipoles interacting with each other. Graphical results, showing the influence of substrates of various dielectric constants, are presented. A discussion of possible improvements of the available model is also reported.
Two-dimensional arrays of particles are of great interest because of their very characteristic optical properties and numerous potential applications. Although a variety of theoretical approaches are available for the description of their properties, methods that are accurate and convenient for computational procedures are always sought. In this work, a new technique to study the diffraction of a monochromatic electromagnetic field by a two-dimensional lattice of spheres is presented. The method, based on Fourier series, can take into account an arbitrary number of terms in the multipole expansion of the field scattered by each sphere. This method has the advantage of leading to simple formulas that can be readily programmed and used as a powerful tool for nanostructure characterization.
A model for linear and nonlinear optical properties of a composite material consisting of spheroidal metal inclusions embedded in a host medium has been formulated using an effective medium approach. Both aligned and randomly oriented spheroids have been considered, and the results obtained showed a considerable difference between the two situations. Numerical calculations for metallic Au inclusions in a glass matrix have shown that the linear absorption in the case of aligned spheroids with their symmetry axis parallel to the z-axis is largely dependent on the depolarization factor, exhibiting an absorption in the vicinity of 500 nm when the depolarization factor in the direction parallel to the rotational symmetry axis is small. This structure shifts progressively to higher wavelengths when this depolarization factor is increased. In the case of randomly oriented spheroids, contributions from the different particle depolarization factors are present and prominent structures in the linear absorption appear in the long wavelength region, beyond 700 nm. Nonlinear optical properties for both aligned and randomly oriented spheroids also show a strong dependence on the depolarization factor and significant enhancements of these properties can be observed, suggesting possible tailoring of composite properties for various applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.