Aseptic loosening results in pain, loss of function, and ultimately prosthetic joint failure and revision surgery. The generation of wear particles from the prosthesis is a major factor in local osteolysis. We investigated the effects of such wear particles on the survival of monocytes and macrophages, populations implicated in wear particle-driven pathology. Particles from titanium aluminum vanadium (TiAlV) and cobalt chromium (CoCr) alloys were generated in-house and were equivalent in size (0.5-3 mm) to those seen in patients. Human CD14 þ monocytes and murine bone marrow-derived macrophages (BMM) were treated with TiAlV and CoCr particles in vitro, and cell survival was assayed. Both particles increased monocyte and macrophage survival in a dose-dependent manner, with an optimal concentration of around 10 7 particles/mL. Conditioned media from particle-treated BMM also increased macrophage survival. Studies with antibody blockade and gene-deficient mice suggest that particle-induced BMM survival is independent of endogenous CSF-1 (M-CSF), GM-CSF, and TNFa. These data indicate that wear particles can promote monocyte/macrophage survival in vitro possibly via an endogenous mediator. If this phenomenon occurs in vivo, it could mean that increased numbers of macrophages (and osteoclasts) would be found at a site of joint implant failure, which could contribute to the local inflammatory reaction and osteolysis. ß
In chronic inflammatory lesions there are increased numbers of macrophages with a possible contribution of enhanced survival/proliferation due, for example, to cytokine action; such lesions are often hypoxic. Prior studies have found that culture in low oxygen can promote monocyte/macrophage survival. We show here, using pharmacologic inhibitors, that the hypoxia-induced pro-survival response of macrophages exhibits a dependence on PI3-kinase and mTOR activities but surprisingly is suppressed by Akt and p38 MAPK activities. It was also found that in hypoxia at CSF-1 concentrations, which under normoxic conditions are suboptimal for macrophage proliferation, macrophages can proliferate more strongly with no evidence for alteration in CSF-1 receptor degradation kinetics. TNF promoted macrophage survival in normoxic conditions with an additive effect in hypoxia. The enhanced hypoxia-dependent survival and/or proliferation of macrophages in the presence of CSF-1 or TNF may contribute to their elevated numbers at a site of chronic inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.