No abstract
The characterization of proteins isolated from skin tissue is apparently an essential parameter for understanding grape ripening as this tissue contains the key compounds for wine quality. It has been particularly difficult to extract proteins from skins for analysis by two-dimensional electrophoresis gels and, therefore, a protocol for this purpose has been adapted. The focus was on the evolution of the proteome profile of grape skin during maturation. Proteome maps obtained at three stages of ripening were compared to assess the extent to which protein distribution differs in grape skin during ripening. The comparative analysis shows that numerous soluble skin proteins evolve during ripening and reveal specific distributions at different stages. Proteins involved in photosynthesis, carbohydrate metabolisms, and stress response are identified as being over-expressed at the beginning of colour-change. The end of colour-change is characterized by the over-expression of proteins involved in anthocyanin synthesis and, at harvest, the dominant proteins are involved in defence mechanisms. In particular, increases in the abundance of different chitinase and beta-1,3-glucanase isoforms were found as the berry ripens. This observation can be correlated with the increase of the activities of both of these enzymes during skin ripening. The differences observed in proteome maps clearly show that significant metabolic changes occur in grape skin during this crucial phase of ripening. This comparative analysis provides more detailed characterization of the fruit ripening process.
This work investigated the structural and biochemical changes during grape berry development which account potentially for the onset and increase in susceptibility to Botrytis cinerea. Using the cv. Sauvignon blanc, we quantified at seven developmental growth stages from herbaceous to over-mature berries: (1) fruit ontogenic resistance using three strains (II-transposa), (2) the morphological and maturity fruit characteristics and (3) preformed biochemical compounds located in the berry skin. From the mid-colour change stage onwards, susceptibility of unwounded fruit increased sigmoidally in both rot and sporulation severities at the berry surface. A principal component analysis identified a very close connection between fruit susceptibility and the level of fruit maturity. Berry susceptibility was significantly and positively correlated with the phenolic compounds in the skin cell walls and negatively correlated with the total tannin content in the skin and with water activity (Aw) at the fruit surface. On the berry, Aw decreased from 0.94 at bunch closure to 0.89 at berry maturity, with a relatively low value (0.90) at the stage of mid-colour change. Using artificial media, different Aw levels led to significant differences in mycelial growth (Aw ≤0.95 resulted in the lowest growth rate ≤0.34 mm day −1 ). Thus, besides the level of fruit maturity, both water activity on the fruit and the total tannin content in the skin may affect fungal growth and berry colonisation. The potential of these variables for use as indicators of grape berry susceptibility as well as associated mechanisms for the development of disease are discussed.
Background and Aims:The impact of grey mould (Botrytis cinerea (B. cinerea)) was quantified on chemical, phenolic and sensory qualities of grapes, derived musts and wines. Methods and Results: Analyses were carried out by using naturally or artificially infected grape berries at ripeness or overripeness. In grape seeds, chemical analyses revealed no major differences between healthy and rotten grapes. In grape skins of Botrytis-affected berries, concentrations of all the phenolic compounds (anthocyanins and proanthocyanidin monomers, dimers and trimer) decreased drastically. Mean degree of polymerization of the proanthocyanidin polymeric fraction was also affected in skins. Chemical analyses of musts and wines made with different percentages of rotten berries showed a moderate impact of the pathogen on their phenolic composition. Nevertheless, sensory analyses underlined a loss of wine sensory quality perceptible from a threshold as low as 5% of Botrytis-affected grapes onwards. Conclusion: Phenolic variations and the associated negative impact in grapes, derived musts and wines may be related to oxidation phenomena from B. cinerea. The main effects of severity/age of grey mould and the level of berry maturity are also discussed. Significance of the Study: B. cinerea drastically affects the phenolic and organoleptic properties of grape skins and derived wines. Therefore, prophylactic actions early in the vineyard, evaluation of the sanitary status of the harvested grapes and berry sorting are primordial even under low disease pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.