SUMMARY The methods used to indicate the biological state of streams are often based on taxonomic composition, and the abundance of species or other taxa. This ‘taxonomic structure’ varies among ecoregions and cannot be applied to wider geographical areas. Therefore, we assessed the species traits of benthic macroinvertebrates from semi‐natural reference sites as a potential benchmark for large‐scale biomonitoring. Our purpose was to assess the stability of community structure, based on the representation of taxa and of traits, across large gradients of geology (sedimentary to granitic), altitude (65–1982 m), geographical coordinates (0° 48′ W to 7° 20′ E and 42° 52′ to 48° 44′ N), stream order (1–5) and slope (0.5–60‰). We used invertebrate abundance data from the 62 most natural French stream sites available. These abundance data served to weight the occurrence of ‘biological’ traits, such as reproductive characteristics, mobility, resistance forms, food, feeding habits, respiration, and ‘ecological’ traits, such as preferences for temperature, trophic level, saprobity, biogeographic distribution, longitudinal zonation, substratum and current velocity. Multivariate analyses of taxonomic composition demonstrated a clear site gradient from lowlands to uplands and from calcareous to granitic geology. In contrast, community structure based on both biological and ecological traits was stable across environmental gradients. The frequency distribution of biological traits indicated that the stream benthos of the ‘reference sites’ had a mixture of categories which confirmed theoretical predictions for temporally stable and spatially variable habitats. A mixture of ecological trait categories also occurred at our reference sites. Thus, semi‐natural benthic macroinvertebrate communities are functionally diverse. Moreover, we included an initial application of these traits to a case of slightly to moderately polluted sites to show that the impact of humans significantly changes this natural functional diversity. Future studies should focus on the potential for various biological and ecological traits to discriminate different human impacts on the benthic macroinvertebrates of running waters, and on the integration of this functional application into a general ‘reference‐condition’ approach.
-Fifty years after the hyporheic zone was first defined (Orghidan, 1959), there are still gaps in the knowledge regarding the role of biodiversity in hyporheic processes. First, some methodological questions remained unanswered regarding the interactions between biodiversity and physical processes, both for the study of habitat characteristics and interactions at different scales. Furthermore, many questions remain to be addressed to help inform our understanding of invertebrate community dynamics, especially regarding the trophic niches of organisms, the functional groups present within sediment, and their temporal changes. Understanding microbial community dynamics would require investigations about their relationship with the physical characteristics of the sediment, their diversity, their relationship with metabolic pathways, their interactions with invertebrates, and their response to environmental stress. Another fundamental research question is that of the importance of the hyporheic zone in the global metabolism of the river, which must be explored in relation to organic matter recycling, the effects of disturbances, and the degradation of contaminants. Finally, the application of this knowledge requires the development of methods for the estimation of hydrological exchanges, especially for the management of sediment clogging, the optimization of self-purification, and the integration of climate change in environmental policies. The development of descriptors of hyporheic *Corresponding author: pierre.marmonier@univ-lyon1.frArticle published by EDP Sciences Ann. Limnol. -Int. J. Lim. 48 (2012) [253][254][255][256][257][258][259][260][261][262][263][264][265][266] Available online at: Ó EDP Sciences, 2012 www.limnology-journal.org DOI: 10.1051/limn/2012009 zone health and of new metrology is also crucial to include specific targets in water policies for the long-term management of the system and a clear evaluation of restoration strategies.
Understanding and predicting how biological communities respond to climate change is critical for assessing biodiversity vulnerability and guiding conservation efforts. Glacier‐ and snow‐fed rivers are one of the most sensitive ecosystems to climate change, and can provide early warning of wider‐scale changes. These rivers are frequently used for hydropower production but there is minimal understanding of how biological communities are influenced by climate change in a context of flow regulation. This study sheds light on this issue by disentangling structural (water temperature preference, taxonomic composition, alpha, beta and gamma diversities) and functional (functional traits, diversity, richness, evenness, dispersion and redundancy) effects of climate change in interaction with flow regulation in the Alps. For this, we compared environmental and aquatic invertebrate data collected in the 1970s and 2010s in regulated and unregulated alpine catchments. We hypothesized a replacement of cold‐adapted species by warming‐tolerant ones, high temporal and spatial turnover in taxa and trait composition, along with reduced taxonomic and functional diversities in consequence of climate change. We expected communities in regulated rivers to respond more drastically due to additive or synergistic effects between flow regulation and climate change. We found divergent structural but convergent functional responses between free‐flowing and regulated catchments. Although cold‐adapted taxa decreased in both of them, greater colonization and spread of thermophilic species was found in the free‐flowing one, resulting in higher spatial and temporal turnover. Since the 1970s, taxonomic diversity increased in the free flowing but decreased in the regulated catchment due to biotic homogenization. Colonization by taxa with new functional strategies (i.e. multivoltine taxa with small body size, resistance forms, aerial dispersion and reproduction by clutches) increased functional diversity but decreased functional redundancy through time. These functional changes could jeopardize the ability of aquatic communities facing intensification of ongoing climate change or new anthropogenic disturbances.
Geomorphic responses to changes in bedload transport in gravel-bed rivers are complex. Such responses occur over long time scales and vary as a function of distance from sediment sources and local channel characteristics. As a result, different types of cascading ecological and social consequences are observed in different parts of a drainage network. This paper presents the results of an interdisciplinary research project, conducted by geomorphologists, ecologists, social scientists, and river managers that focused on changes in bedload transport in the Drôme River catchment in south-eastern France. Our objective was to document a general conceptual framework of the historical and current physical, ecological, and social implications of human-caused bedload transport changes in the Drôme River watershed that could be used to develop sediment management plans for similar gravel-bed river catchments. First, we synthesized the historical trajectory of the Drôme River over the past two centuries from a geomorphic perspective in relation to the evolution of socio-economic activities. Then, we summarized typical ecological responses to gravel-bed channel adjustment. Third, we reviewed how the problems of water and sediment management in the Drôme have been addressed over the past 20 years. We identified the best technical solutions for the replenishment of incised reaches by considering practical interdisciplinary questions including each techniques juridical feasibility, ecological impacts, and its degree of acceptance by managers and the public. Finally, we integrated geomorphic processes, ecological dynamics, and socio-economic values into a functional river reach typology that was used to map target restoration reaches and potential sediment sources throughout the Drôme River catchment.
Multitable techniques are rarely used for investigating patterns in ecological data surveys despite their ability to deal with the spatial and/or temporal stability of assemblages. Based on a covariance optimisation criterion, Multiple Co-inertia analysis (MCOA) enables the simultaneous ordination of several tables. Such analysis allows the representation of the stable vs. unstable part of the assemblage structure in comparison to a reference derived from each table. We used MCOA on multiple time series of invertebrate sampling to show that synchrony in the temporal variability of communities can establish between geographically distant locations despite the spatial and temporal plasticity of the faunistic responses to long-term changes in environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.