The aim was to assess the efficiency of gaits characteristics in improving jumping performance of sport horses and confront accelerometers and judge scores for this purpose. A sample of 1,477 young jumping horses were measured using accelerometers for walk, trot, and canter. Of these, 702 were genotyped with 541,175 SNPs after quality control. Dataset of 26,914 horses scored by judges in breeding shows for gaits and dataset of 142,682 horses that performed in jumping competitions were used. Analysis of accelerometric data defined three principal components from 64% to 89% of variability explained for each gait. Animal mixed models were used to estimate genetic parameters with the inclusion to up 308,105 ancestors for the relationship matrix. Fixed effects for the accelerometric variables included velocity, gender, age, and event. A GWAS was performed on residuals with the fixed effect of each SNP. The GWAS did not reveal other QTLs for gait traits than the one related to the height at withers. The accelerometric principal components were highly heritable for the one linked to stride frequency and dorsoventral displacement at trot (0.53) and canter (0.41) and moderately for the one linked to longitudinal activities (0.33 for trot, 0.19 for canter). Low heritabilities were found for the walk traits. The genetic correlations of the accelerometric principal components with the jumping competition were essentially nil, except for a negative correlation with longitudinal activity at canter (-0.19). The genetic correlation between the judges’ scores and the jumping competition reached 0.45 for canter (0.31 for trot and 0.17 for walk). But these correlations turned negative when the scores were corrected for the known parental breeding value for competition at the time of the judging. In conclusion, gait traits were not helpful to select for jumping performances. Different gaits may be suitable for a good jumping horse.
The aim of this study was to evaluate the genetic component of the locomotor jumping ability, via a wearable accelerometer sensor, and to estimate the genetic correlation with performance in competition, to introduce such criteria in selection schema. A sample of 1,056 young 3-year-old horses were equipped with a 3-dimensional accelerometer during a free jumping test, in regular breeding shows from 2015 to 2017. Seven variables were extracted from the dorso-ventral acceleration curve for the last three jumps over a double bar obstacle of 1.15 m for the front pole and 1.20 m for the back pole with a 1.20 m spread. Variables were the peaks of forelimbs, hindlimbs, and landing acceleration, the duration between peaks at takeoff , the peak of forelimb acceleration and start of jump, jump duration and duration between the beginning of the impact of forelimbs and the peak at landing. During breeding shows, judges scored balance, strength, style, and reactivity for free jumping and jumping tests under saddle. Jumping competition results were recorded by logarithm of the sum of points earned in each competition. All horses in official competitions were included, i.e., 160,257 horses born in 1997 with a total of 649,491 annual performances. An animal mixed model with complete pedigree over four generations (353,236 horses) were used with fixed effects of jumping test location and date, morning/afternoon, gender, month of birth, rank of jump for accelerometric data, effect of year of competition, combined with age and gender for competition results. As a result, jump duration was the most heritable and repeatable for jump variables: h 2 = 0.16 (0.06), r = 0.52 (0.02), while accelerations were moderately heritable (h 2 = 0.05-0.09, r = 0.39-0.51). Judgement scores were heritable: 0.21 (0.07)−0.33 (0.09) and were highly correlated. Scores during free jumping were genetically correlated to jump duration: 0.71 (0.15)−0.88 (0.16). Both jump duration and judgement scores were genetically correlated to competition performance: 0.59 (0.13) for jump duration, from 0.60 (0.11) to 0.77 (0.12) for scores. Jump duration and judgement scores can be used as early selection criteria. The advantage of the accelerometric measurement is its objectivity and the ease of recording.
Functional longevity is essential for the well-being of horses and the satisfaction of riders. Conventional selection using longevity breeding values calculated from competition results is not efficient because it takes too long to obtain reliable information. Therefore, the objective was to identify early criteria for selection. We assessed two types of early criteria: gait traits of young horses and QTLs. Thus, our aim was to estimate the genetic correlation between gait traits and longevity and to perform a genome-wide association study (GWAS) for longevity. Measurements of gaits by accelerometry were recorded on 1,477 show jumping horses that were 4 to 5 years old. Gait analysis provided 9 principal components describing trot, canter, and walk. Longevity estimated breeding values (EBVs) for stallions were calculated using a survival analysis of more than 900,000 years of performances by 179,448 show jumping horses born from 1981 onwards. Longevity was measured as the number of years spent in competition. Model included region and month of birth, age at first competition, year, and performance level. Longevity EBVs were deregressed to obtain weighted pseudo-performances for 1,968 stallions. Genomic data were available for 3,658 jumping horses. Seventy-eight percent of the horses measured for gaits and twenty-five percent of those measured for longevity were genotyped. A GWAS of longevity revealed no significant QTLs. Genetic parameters between each of the 9 principal components of the gait variables and longevity were evaluated with a bi-trait animal linear mixed model using single-step GBLUP analysis with the relationship matrix constructed from genomic data and genealogy (24,448 ancestors over four generations). The heritability of the gait traits varied from 0.11 to 0.44. The third principal component for trot (high lateral activity) and the first principal component for canter (high dorsoventral activity and low stride frequency) were moderately genetically correlated with higher longevity: rg = 0.38 (0.15) and 0.28 (0.13), respectively. Our study revealed that functional longevity is a polygenic trait with no major genes. We found new correlations between longevity and gait traits. Before using gait characteristics in a selection plan, these correlations need to be understood better at the biomechanical level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.