Hepatitis B surface antigen (HBsAg), the major coat protein of hepatitis B virus, is also secreted from cells as a subviral particle, without concomitant cleavage of N-terminal amino acid sequences. We examined this unusual export process in a cell-free system and showed that the initial product of HBsAg biosynthesis is an integral transmembrane protein, with most or all of its C-terminal half on the lumenal side of the endoplasmic reticulum membrane. To study the nature of its topogenic signals, we synthesized fusion proteins between HBsAg and the nonsecreted protein alpha-globin. Fusion proteins in which approximately 100 amino acids of globin preceded all HBsAg sequences were successfully translocated in vitro; the same domain as in the wild-type HBsAg was transported into the vesicle lumen. Fusions in which the entire globin domain was C terminal were able to translocate both the C-terminal region of HBsAg and its attached globin domain. Thus, uncleaved signal sequences in p24s function to direct portions of the molecule across the membrane and are able to perform this function even when positioned in an internal protein domain.
To investigate the mechanisms by which complex membrane proteins achieve their correct transmembrane orientation, we examined in detail the hepatitis B surface antigen for sequences which determine its membrane topology. The results demonstrated the presence of at least two kinds of topogenic elements: an N-terminal uncleaved signal sequence and an internal element containing both signal and stop-transfer functions. Fusion of reporter groups to either end of the protein suggested that both termini are translocated across the membrane bilayer. We propose that this topology is generated by the conjoint action of both elements and involves a specifically oriented membrane insertion event mediated by the internal sequence. The functional properties of each element can be instructively compared with those of simpler membrane proteins and may provide insight into the generation of other complex protein topologies.
Silent HIV-1 infections are exceedingly rare among screened blood donors, so the current risk of HIV-1 transmission from blood transfusions, even in high-prevalence metropolitan areas, is extremely low.
The coding region for the hepatitis B virus surface antigens contains three in-phase ATG codons which direct the synthesis of three related polypeptides. The 24-kilodalton major surface (or S) glycoprotein is initiated at the most distal ATG and is a transmembrane protein whose translocation across the bilayer is mediated by at least two uncleaved signal sequences. The product of the next upstream ATG is the 31-kilodalton pre-S2 protein, which contains 55 additional amino acids attached to the N terminus of the S protein. This pre-S2-specific domain is translocated into the endoplasmic reticulum. Using a coupled in vitro translationtranslocation system, we showed that (i) the pre-S2 domain itself lacks functional signal sequence activity, (ii) its translocation across the endoplasmic reticulum membrane is mediated by downstream signals within the S domain, and (iii) the N-terminal signal sequence of the S protein can translocate upstream protein domains in the absence of other signals. The hepatitis B virus pre-S2 protein is an example of a natural protein which displays upstream domain translocation, a phenomenon whose existence was originally inferred from the behavior of synthetic fusion proteins in vitro.
Subacute sclerosing panencephalitis (SSPE) is a slow infection caused by measles virus in which several years separate recovery from typical acute measles and the development of a slowly progressive neurological disease. We have investigated replication of measles virus in brain tissue obtained after the onset of neurological disease and in the terminal phase. With a hybridization tomographic technique that combines in situ hybridization with macroradioautographic screening of large areas of tissue, we analyzed the spatial and temporal distribution of virus genes in vivo, using region-and strand-specific probes for the nucleocapsid and matrix genes. We show that early in the course of SSPE there is a global repression in the synthesis and expression of the genome. In the final stage of SSPE most infected cells still have depressed levels of plus-and minus-strand viral RNA and contain nucleocapsid protein but lack matrix protein. These findings provide further evidence for a unified view of slow infections of the nervous system, where the general constraints on virus gene expression provide an explanation for persistence of virus in the face of the host's immune response, and the slow evolution of pathological change. In the final phases of SSPE the more specific block in virus replication accounts for the cell-associated state of the virus and the difficulty in virus isolation.In slow infections caused by conventional viruses, periods often of years separate acquisition of virus and overt symptoms, and, during the long incubation period, virus persists in the face of the host's immune response. Subacute sclerosing panencephalitis (SSPE), for example, is a rare complication of measles infections in which the afflicted child ostensibly recovers from measles, develops normally for several years, and then slowly succumbs to a neurological disorder. The neurological disease reflects destruction of cells in the brain harboring measles virus despite high levels of virusspecific antibody in serum and cerebrospinal fluid (1-3).We have attributed the slow evolution of SSPE and the persistence of measles virus in this disease to restricted synthesis and expression of virus genes in the nervous system (4). These global constraints result in decreased levels of viral antigens in the cell and, pari passu, diminished effectiveness of immune surveillance in eradication of infected cells.Restricted gene expression also mitigates cellular injury accompanying virus replication, and tissue damage therefore accumulates slowly.This interpretation of the pathogenesis of SSPE emerged from investigations of tissues obtained for diagnosis relatively early in the disease (4). In the terminal state a more specific block in virus replication has been identified (5-9). The viral matrix (M) protein required for maturation of measles virus is markedly decreased in brain and in cell cultures derived from a patient with SSPE. In the latter case, mRNA for the M protein is present but is not translated effectively in vitro (9).In this arti...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.