The worldwide epidemic of obesity and insulin resistance favors nonalcoholic fatty liver disease (NAFLD). Insulin resistance (IR) in the adipose tissue increases lipolysis and the entry of nonesterified fatty acids (NEFAs) in the liver, whereas IR‐associated hyperinsulinemia promotes hepatic de novo lipogenesis. However, several hormonal and metabolic adaptations are set up in order to restrain hepatic fat accumulation, such as increased mitochondrial fatty acid oxidation (mtFAO). Unfortunately, these adaptations are usually not sufficient to reduce fat accumulation in liver. Furthermore, enhanced mtFAO without concomitant up‐regulation of the mitochondrial respiratory chain (MRC) activity induces reactive oxygen species (ROS) overproduction within different MRC components upstream of cytochrome c oxidase. This event seems to play a significant role in the initiation of oxidative stress and subsequent development of nonalcoholic steatohepatitis (NASH) in some individuals. Experimental investigations also pointed to a progressive reduction of MRC activity during NAFLD, which could impair energy output and aggravate ROS overproduction by the damaged MRC. Hence, developing drugs that further increase mtFAO and restore MRC activity in a coordinated manner could ameliorate steatosis, but also necroinflammation and fibrosis by reducing oxidative stress. In contrast, physicians should be aware that numerous drugs in the current pharmacopoeia are able to induce mitochondrial dysfunction, which could aggravate NAFLD in some patients. (Hepatology 2013;58:1497–1507)
Numerous investigations have shown that mitochondrial dysfunction is a major mechanism of drug-induced liver injury, which involves the parent drug or a reactive metabolite generated through cytochromes P450. Depending of their nature and their severity, the mitochondrial alterations are able to induce mild to fulminant hepatic cytolysis and steatosis (lipid accumulation), which can have different clinical and pathological features. Microvesicular steatosis, a potentially severe liver lesion usually associated with liver failure and profound hypoglycemia, is due to a major inhibition of mitochondrial fatty acid oxidation (FAO). Macrovacuolar steatosis, a relatively benign liver lesion in the short term, can be induced not only by a moderate reduction of mitochondrial FAO but also by an increased hepatic de novo lipid synthesis and a decreased secretion of VLDL-associated triglycerides. Moreover, recent investigations suggest that some drugs could favor lipid deposition in the liver through primary alterations of white adipose tissue (WAT) homeostasis. If the treatment is not interrupted, steatosis can evolve toward steatohepatitis, which is characterized not only by lipid accumulation but also by necroinflammation and fibrosis. Although the mechanisms involved in this aggravation are not fully characterized, it appears that overproduction of reactive oxygen species by the damaged mitochondria could play a salient role. Numerous factors could favor drug-induced mitochondrial and metabolic toxicity, such as the structure of the parent molecule, genetic predispositions (in particular those involving mitochondrial enzymes), alcohol intoxication, hepatitis virus C infection, and obesity. In obese and diabetic patients, some drugs may induce acute liver injury more frequently while others may worsen the pre-existent steatosis (or steatohepatitis).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.