We systematically surveyed period variations of superhumps in SU UMa-type dwarf novae based on newly obtained data and past publications. In many systems, the evolution of the superhump period is found to be composed of three distinct stages: an early evolutionary stage with a longer superhump period, a middle stage with systematically varying periods, and a final stage with a shorter, stable superhump period. During the middle stage, many systems with superhump periods of less than 0.08 d show positive period derivatives. We present observational characteristics of these stages and give greatly improved statistics. Contrary to an earlier claim, we found no clear evidence for a variation of period derivatives among different superoutbursts of the same object. We present an interpretation that the lengthening of the superhump period is a result of the outward propagation of an eccentricity wave, which is limited by the radius near the tidal truncation. We interpret that late-stage superhumps are rejuvenated excitation of a 3:1 resonance when superhumps in the outer disk are effectively quenched. The general behavior of the period variation, particularly in systems with short orbital periods, appears to follow a scenario proposed in Kato, Maehara, and Monard (2008, PASJ, 60, L23). We also present an observational summary of WZ Sge-type dwarf novae. Many of them have shown long-enduring superhumps during a post-superoutburst stage having longer periods than those during the main superoutburst. The period derivatives in WZ Sge-type dwarf novae are found to be strongly correlated with the fractional superhump excess, or consequently with the mass ratio. WZ Sge-type dwarf novae with a long-lasting rebrightening or with multiple rebrightenings tend to have smaller period derivatives, and are excellent candidates for those systems around or after the period minimum of evolution of cataclysmic variables.
Eta Carinae (η Car) is an extremely massive binary system in which rapid spectrum variations occur near periastron. Most notably, near periastron the He IIλ4686 line increases rapidly in strength, drops to a minimum value, then increases briefly before fading away. To understand this behavior, we conducted an intense spectroscopic monitoring of the He IIλ4686 emission line across the 2014.6 periastron passage using ground-and space-based telescopes. Comparison with previous data confirmed the overall repeatability of the line equivalent width (EW), radial velocities, and the timing of the minimum, though the strongest peak was systematically larger in 2014 than in 2009 by 26%. The EW variations, combined with other measurements, yield an orbital period of 2022.7±0.3 days. The observed variability of the EW was reproduced by a model in which the line flux primarily arises at the apex of the wind-wind collision and scales inversely with the square of the stellar separation, if we account for the excess emission as the companion star plunges into the hot inner layers of the primary's atmosphere, and including absorption from the disturbed primary wind between the source and the observer. This model constrains the orbital inclination to 135°-153°, and the longitude of periastron to 234°-252°. It also suggests that periastron passage occurred on T 2456874.4 1.3
From 5.5 months of dual-band optical photometric monitoring at the 1 mmag level, BRITE-Constellation has revealed two simultaneous types of variability in the O4I(n)fp star ζ Puppis: one single periodic non-sinusoidal component superimposed on a stochastic component. The monoperiodic component is the 1.78 d signal previously detected by Coriolis/SMEI, but this time along with a prominent first harmonic. The shape of this signal changes over time, a behaviour that is incompatible with stellar oscillations but consistent with rotational modulation arising from evolving bright surface inhomogeneities. By means of a constrained non-linear light curve inversion algorithm we mapped the locations of the bright surface spots and traced their evolution. Our simultaneous ground-based multi-site spectroscopic monitoring of the star unveiled cyclical modulation of its He ii λ4686 wind emission line with the 1.78-day rotation period, showing signatures of Corotating Interaction Regions (CIRs) that turn out to be driven by the bright photospheric spots observed by BRITE. Traces of wind clumps are also observed in the He ii λ4686 line and are correlated with the amplitudes of the stochastic component of the light variations probed by BRITE at the photosphere, suggesting that the BRITE observations additionally unveiled the photospheric drivers of wind clumps in ζ Pup and that the clumping phenomenon starts at the very base of the wind. The origins of both the bright surface inhomogeneities and the stochastic light variations remain unknown, but a subsurface convective zone might play an important role in the generation of these two types of photospheric variability.
We describe the results of the world-wide observing campaign of the highly eccentric Be binary system δ Scorpii 2011 periastron passage which involved professional and amateur astronomers. Our spectroscopic observations provided a precise measurement of the system orbital period at 10.8092 ± 0.0005 yr. Fitting of the He ii 4686 Å line radial velocity curve determined the periastron passage time on 2011 July 3, UT 9:20 with a 0.9-day uncertainty. Both these results are in a very good agreement with recent findings from interferometry. We also derived new evolutionary masses of the binary components (13 and 8.2 M ) and a new distance of 136 pc from the Sun, consistent with the HIPPARCOS parallax. The radial velocity and profile variations observed in the Hα line near the 2011 periastron reflected the interaction of the secondary component and the circumstellar disk around the primary component. Using these data, we estimated a disk radius of 150 R . Our analysis of the radial velocity variations measured during the periastron passage time in 2000 and 2011 along with those measured during the 20th century, the high eccentricity of the system, and the presence of a bow shock-like structure around it suggest that δ Sco might be a runaway triple system. The third component should be external to the known binary and move on an elliptical orbit that is tilted by at least 40 • with respect to the binary orbital plane for such a system to be stable and responsible for the observed long-term radial velocity variations.
Abstract. We report optical photometric observations of four superoutbursts of the short-period dwarf nova TV Crv. This object experiences two types of superoutbursts; one with a precursor and the other without. The superhump period and period excess of TV Crv are accurately determined to be 0.065028 ± 0.000008 d and 0.0342 ± 0.0021, respectively. This large excess implies a relatively large mass ratio of the binary components (M 2 /M 1 ), though it has a short orbital period. The two types of superoutbursts can be explained by the thermal-tidal instability model for systems having large mass ratios. Our observations reveal that superhump period derivatives are variable in distinct superoutbursts. The variation is apparently related to the presence or absence of a precursor. We propose that the superhump period derivative depends on the maximum disk radius during outbursts. We investigate the relationship of the type of superoutbursts and the superhump period derivative for known sources. In the case of superoutbursts without a precursor, superhump period derivatives tend to be larger than those in precursor-main type superoutbursts, which is consistent with our scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.