The world population currently stands at about 7 billion amidst an expected increase in 2030 from 9.4 billion to around 10 billion in 2050. This burgeoning population has continued to influence the upward demand for animal food. Moreover, the management of finite resources such as land, the need to reduce livestock contribution to greenhouse gases, and the need to manage inherent complex, highly contextual, and repetitive day-to-day livestock management (LsM) routines are some examples of challenges to overcome in livestock production. The Internet of Things (IoT)’s usefulness in other vertical industries (OVI) shows that its role will be significant in LsM. This work uses the systematic review methodology of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to guide a review of existing literature on IoT in OVI. The goal is to identify the IoT’s ecosystem, architecture, and its technicalities—present status, opportunities, and expected future trends—regarding its role in LsM. Among identified IoT roles in LsM, the authors found that data will be its main contributor. The traditional approach of reactive data processing will give way to the proactive approach of augmented analytics to provide insights about animal processes. This will undoubtedly free LsM from the drudgery of repetitive tasks with opportunities for improved productivity.
Spams are what users and developers should be aware of in all Internet-based communication tools (such as e-mail, websites, Social Networking Sites (SNS), instant messengers and so on). This is because spammers have not ceased from using these platforms to deceive and lure users into releasing vibrant and sensitive information (especially, financial details). This paper developed an architectural based technique for SPIM (Instant Message Spam or IM SPAM) detection using the classification method. The classification was done using the C4.5 classifier with a dataset of messages gotten from an instant messaging environment. The dataset served as the input to the classification algorithm method which was able to distinguish spam from non-spam messages. This classification method was depicted in a tree form to show its usefulness. The results show that its precision, recall and accuracy rate satisfied standard recommendation with a commendable error rate. The proposed technique will find implication in the reduction of the number of Internet users.
Disease rates vary between different locations particularly in the rural areas. While a database of diseases occurrence could be easily found, studies have been limited to descriptive statistical analysis, and are mostly restricted to diseases affecting adults. This paper therefore presents a Mathematical Model (MM) for predicting immunize-able diseases that affect children between ages 0 -5 years. The model was adapted and deployed for use in six (6) selected localized areas within Osun State in Nigeria. Using the MATLAB's ANN toolbox, the Statistics toolbox for classification and regression, and the Naïve Bayesian classifier the MM was developed. The MM is robust in that it takes advantage of three (3) data mining techniques: ANN, Decision Tree Algorithm and Naïve Bayes Classifier. These data mining techniques provided the means by which hidden information were discovered for detecting trends within databases, and thus facilitate the prediction of future disease occurrence in the tested locations. Results obtained showed that diseases have peak periods depending on their epidemicity, hence the need to adequately administer immunization to the right places at the right time. Therefore, this paper argues that using this model would enhance the effectiveness of routine immunization in Nigeria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.