The aim of the present study was to compare the metabolic fate of repeated doses of fructose or glucose ingested every 30 min during long-duration moderate-intensity exercise in men. Healthy volunteers exercised for 3 h on a treadmill at 45% of their maximal oxygen consumption rate. "Naturally labeled" [13C]glucose or [13C]fructose was given orally at 25-g doses every 30 min (total feeding: 150 g; n = 6 in each group). Substrate utilization was evaluated by indirect calorimetry, and exogenous sugar oxidation was measured by isotope ratio mass spectrometry on expired CO2. Results were corrected for baseline drift in 13C/12C ratio in expired air due to exercise alone. Fructose conversion to plasma glucose was measured combining gas chromatography and isotope ratio mass spectrometry. Most of the ingested glucose was oxidized: 81 +/- 4 vs. 57 +/- 2 g/3 h for fructose (2P < 0.005). Exogenous glucose covered 20.8 +/- 1.4% of the total energy need (+/- 6.7 MJ) compared with 14.0 +/- 0.6% for fructose (2P < 0.005). The contribution of total carbohydrates was significantly higher and that of lipids significantly lower with glucose than with fructose. The blood glucose response was similar in both protocols. From 90 to 180 min, 55-60% of circulating glucose was derived from ingested fructose. In conclusion, when ingested repeatedly during moderate-intensity prolonged exercise, fructose is metabolically less available than glucose, despite a high rate of conversion to circulating glucose.
This study attempted to induce a major shift in the utilization of endogenous substrates during exercise in men by the use of a potent inhibitor of adipose tissue lipolysis, Acipimox, and to see to what extent this affects the 13C/12C ratio in expired air CO2. Six healthy volunteers exercised for 3 h on a treadmill at approximately 45% of their maximum O2 uptake, 75 min after having ingested either a placebo or 250 mg Acipimox. The rise in plasma free fatty acids and glycerol was almost totally prevented by Acipimox, and no significant rise in the utilization of lipids, evaluated by indirect calorimetry, was observed. Total carbohydrate oxidation averaged 128 +/- 17 (placebo) and 182 +/- 21 g/3 h (Acipimox). Conversely, total lipid oxidation was 84 +/- 5 (placebo) and 57 +/- 6 g/3 h (Acipimox; P < 0.01). Under placebo, changes in expired air CO2 delta 13C were minimal, with only a 0.49/1000 significant rise at 30 min. In contrast, under Acipimox, the rise in expired air CO2 delta 13C averaged 1/1000 and was significant throughout the 3-h exercise bout; in these conditions calculation of a "pseudooxidation" of an exogenous sugar naturally or artificially enriched in 13C, but not ingested, would have given an erroneous value of 19.8 +/- 2.6 g/3 h. Thus under conditions of extreme changes in endogenous substrate utilization, an appropriate control experiment is mandatory when studying exogenous substrate oxidation by 13C-labeled substrates and isotope-ratio mass spectrometry measurements on expired air CO2.
We aimed to determine whether a cumulative dose of vitamin D3 produces the same effects on the serum concentration of 25(OH)D3 if it is given daily or monthly. This is a monocentric, two-armed, randomized, interventional, open, and parallel study conducted from November 2016 to March 2017 in Belgium. We randomized 60 subjects with vitamin D deficiency to receive 2000 IU vitamin D3 daily or 50,000 IU monthly. The same cumulative dose of vitamin D3 was given to each treatment group (150,000 IU). The 25(OH)D3 serum concentrations from baseline to day 75 were 14.3 ± 3.7 to 27.8 ± 3.9 ng/mL in the monthly group and 14.1 ± 3.4 to 28.8 ± 5.4 ng/mL in the daily group. The mean change versus the baseline level was significantly different between the groups at day 2, 4, 7, and 14 and no longer different from day 25. One day after the intake of vitamin D3, as expected, serum 25(OH)D3 and 1,25(OH)2D3 increased significantly in the monthly group, whereas they did not change significantly in the daily group. The median time to reach the 20 ng/mL target concentration was significantly different in the two groups, in favor of the monthly regimen (1 day versus 14 days; p = 0.02). In conclusion, a monthly administration of 50,000 IU vitamin D3 provides an effective tool for a rapid normalization of 25(OH)D3 in deficient subjects. A daily administration of the same cumulative dose is similarly effective but takes two weeks longer to reach the desirable level of 20 ng/mL.
In order to evaluate the metabolic consequences of a 2-h nocturnal interruption of continuous subcutaneous insulin infusion (CSII), seven insulin-dependent diabetic patients without residual insulin secretion were investigated. The changes in blood glucose, plasma free insulin, glucagon, free fatty acids, and 3-hydroxybutyrate (3 OH-B) concentrations have been compared during two randomized tests carried out either during the normal functioning of a Mill-Hill pump from 10 p.m. to 8 a.m. (1.00 +/- 0.06 U insulin/h, keeping adequate metabolic control) or during the same conditions but with a deliberate arrest of the pump between 11 p.m. and 1 a.m. Considering the value recorded at 11 p.m. as reference, interruption of the insulin infusion resulted in: (1) a rapid (already significant after 1 h) and sustained (maximal fall: --12.5 +/- 2.5 mU/L at 3 a.m.) decrease in plasma free insulin; (2) a delayed (significant after 4 h) and linear rise in blood glucose (maximal increase: + 4.0 +/- 1.3 mmol/L at 5 a.m.); (3) an early (significant at midnight) and prolonged rise in plasma free fatty acids (+ 387 +/- 148 mumol/L at 3 a.m.); (4) a delayed (significant after 3 h) and sustained increase in plasma 3 OH-B (+ 347 +/- 88 mumol/L at 3 a.m.); and (5) no significant changes in plasma glucagon. Thus, a 2-h interruption of CSII in resting nocturnal conditions is sufficient to induce significant, delayed, and sustained metabolic alterations in C-peptide-negative patients despite good baseline blood glucose control. Resetting the pump at its basal rate is insufficient to quickly restore adequate circulating insulin levels and effectively counteract the metabolic disturbances. The efficacy of a bolus insulin injection in these conditions should be evaluated.
Many people worldwide are vitamin D (VTD) deficient or insufficient, and there is still no consensus on the dose of VTD that should be administered to achieve a 25(OH)D concentration of 20 or 30 ng/mL. In this study, we aimed to determine an adapted supplementation of VTD able to quickly and safely increase the vitamin D status of healthy adults with low 25(OH)D. One hundred and fifty (150) subjects were randomized into three groups, each to receive, orally, a loading dose of 50,000, 100,000 or 200,000 IU of VTD3 at Week 0, followed by 25,000, 50,000 or 100,000 IU at Week 4 and Week 8. Whereas 25(OH)D baseline values were not different between groups (p = 0.42), a significant increase was observed at Week 12 (p < 0.0001) with a mean change from baseline of 7.72 ± 5.08, 13.3 ± 5.88 and 20.12 ± 7.79 ng/mL. A plateau was reached after eight weeks. No related adverse event was recorded. This study demonstrated a linear dose-response relationship with an increase in 25(OH)D levels proportional to the dose administered. In conclusion, a loading dose of 200,000 IU VTD3 followed by a monthly dose of 100,000 IU is the best dosing schedule to quickly and safely correct the VTD status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.