The dose-response curve of the gravitropic reaction is often used to evaluate the gravisensing of plant organs. It has been proposed (Larsen 1957) that the response (curvature) varies linearly as a function of the logarithm of the dose of gravistimulus. As this model fitted correctly most of the data obtained in the literature, the presentation time (tp, minimal duration of stimulation in the gravitational field to induce a response) or the presentation dose (dp, minimal quantity in g.s of stimulation to induce a response) were estimated by extrapolating down to zero curvature the straight line representing the response as a function of the logarithm of the stimulus. This method was preferred to a direct measurement of dp or tp with minute stimulations, since very slight gravitropic response cannot be distinguished from the background oscillations of the extremity of the organs. In the present review, it is shown that generally the logarithmic model (L) does not fit the experimental data published in the literature as well as the hyperbolic model (H). The H model in its simplest form is related to a response in which a ligand-receptor system is the limiting phase in the cascade of events leading to the response (Weyers et al. 1987). However, it is demonstrated that the differential growth, responsible for the curvature (and the angle of curvature), would vary as a hyperbolic function of the dose of stimulation, even if several steps involving ligand-receptor systems are responsible for the gravitropic curvature. In the H model, there is theoretically no presentation time (or presentation dose) since the curve passes through the origin. The value of the derivative of the H function equals a/b and represents the slope of the cune at the origin. It could be therefore used to estimate gravisensitivity. This provides a measurement of graviresponsiveness for threshold doses of stimulation. These results imply that the presentation time (or presentation dose) derived from the L model cannot be used anymore as an estimate of gravisensitivity. On the contrary, the perception time (minimal duration of a repeated stimulation which induces a response), which is less than 1 s, should be related to the perception of gravity. The consequences of these results on the mode of action and the nature of graviperception are discussed.
The kinetics of the movement of statoliths in gravity-perceiving root cap cells of Lens culinaris L. and the force responsible for it have been analysed under 1 g and under microgravity conditions (S/MM-03 mission of Spacehab 1996). At the beginning of the experiment in space, the amyloplasts were grouped at the distal pole of the statocytes by a root-tip-directed 1-g centrifugal acceleration. The seedlings were then placed in microgravity for increasing periods of time (13, 29, 46 or 122 min) and chemically fixed. During the first 29 min of microgravity there were local displacements (mean velocity: 0.154 microm min(-1)) of some amyloplasts (first at the front of the group and then at the rear). Nevertheless, the group of amyloplasts tended to reconstitute. After 122 min in microgravity the bulk of amyloplasts had almost reached the proximal pole where further movement was blocked by the nucleus. After a longer period in microgravity (4 h; experiment carried out 1994 during the IML 2 mission) the statoliths reached a stable position due to the fact that they were stopped by the nucleus. The position was similar to that observed in roots grown continuously in microgravity. Treatment with cytochalasin D (CD) did not stop the movement of the amyloplasts but slowed down the velocity of their displacement (0.019 microm min(-1)). Initial movement patterns were the same as in control roots in water. Comparisons of mean velocities of amyloplast movements in roots in space and in inverted roots on earth showed that the force responsible for the movement in microgravity (Fc) was about 86% less (Fc = 0.016 pN) than the gravity force (Fg = 0.11 pN). Treatment with CD reduced Fc by two-thirds. The apparent viscosity of the statocyte cytoplasm was found to be 1 Pa s or 3.3 Pa s for control roots or CD treated roots, respectively. Brownian motion or elastic forces due to endoplasmic reticulum membranes do not cause the movement of the amyloplasts in microgravity. It is concluded that the force transporting the statoliths is caused by the actomyosin system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.