BackgroundRift Valley Fever (RVF) is a mosquito-borne viral zoonosis that was first isolated and characterized in 1931 in Kenya. RVF outbreaks have resulted in significant losses through human illness and deaths, high livestock abortions and deaths. This report provides an overview on epidemiology of RVF including ecology, molecular diversity spatiotemporal analysis, and predictive risk modeling.MethodologyUsing the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched for relevant RVF publications in repositories of the World Health Organization Library and Information Networks for Knowledge (WHOLIS), U.S Centers for Disease Control and Prevention (CDC), and Food and Agricultural Organization (FAO). Detailed searches were performed in Google Scholar, SpringerLink, and PubMed databases and included conference proceedings and books published from 1931 up to 31st January 2015.Results and discussionA total of 84 studies were included in this review; majority (50%) reported on common human and animal risk factors that included consumption of animal products, contact with infected animals and residing in low altitude areas associated with favorable climatic and ecological conditions for vector emergence. A total of 14 (16%) of the publications described RVF progressive spatial and temporal distribution and the use of risk modeling for timely prediction of imminent outbreaks. Using distribution maps, we illustrated the gradual spread and geographical extent of disease; we also estimated the disease burden using aggregate human mortalities and cumulative outbreak periods for endemic regions.ConclusionThis review outlines common risk factors for RVF infections over wider geographical areas; it also emphasizes the role of spatial models in predicting RVF enzootics. It, therefore, explains RVF epidemiological status that may be used for design of targeted surveillance and control programs in endemic countries.
BackgroundRift Valley fever (RVF)-like disease was first reported in Tanzania more than eight decades ago and the last large outbreak of the disease occurred in 2006–07. This study investigates the spatial and temporal pattern of RVF outbreaks in Tanzania over the past 80 years in order to guide prevention and control strategies.Materials and MethodsA retrospective study was carried out based on disease reporting data from Tanzania at district or village level. The data were sourced from the Ministries responsible for livestock and human health, Tanzania Meteorological Agency and research institutions involved in RVF surveillance and diagnosis. The spatial distribution of outbreaks was mapped using ArcGIS 10. The space-time permutation model was applied to identify clusters of cases, and a multivariable logistic regression model was used to identify risk factors associated with the occurrence of outbreaks in the district.Principal FindingsRVF outbreaks were reported between December and June in 1930, 1947, 1957, 1960, 1963, 1968, 1977–79, 1989, 1997–98 and 2006–07 in 39.2% of the districts in Tanzania. There was statistically significant spatio-temporal clustering of outbreaks. RVF occurrence was associated with the eastern Rift Valley ecosystem (OR = 6.14, CI: 1.96, 19.28), total amount of rainfall of >405.4 mm (OR = 12.36, CI: 3.06, 49.88), soil texture (clay [OR = 8.76, CI: 2.52, 30.50], and loam [OR = 8.79, CI: 2.04, 37.82]).Conclusion/SignificanceRVF outbreaks were found to be distributed heterogeneously and transmission dynamics appeared to vary between areas. The sequence of outbreak waves, continuously cover more parts of the country. Whenever infection has been introduced into an area, it is likely to be involved in future outbreaks. The cases were more likely to be reported from the eastern Rift Valley than from the western Rift Valley ecosystem and from areas with clay and loam rather than sandy soil texture.
Abstract. To capture lessons from the 2007 Rift Valley fever (RVF) outbreak, epidemiological studies were carried out in Kenya and Tanzania. Somali pastoralists proved to be adept at recognizing symptoms of RVF and risk factors such as heavy rainfall and mosquito swarms. Sandik, which means "bloody nose," was used by Somalis to denote disease consistent with RVF. Somalis reported that sandik was previously seen in 1997/98, the period of the last RVF epidemic. Pastoralists communicated valuable epidemiological information for surveillance and early warning systems that was observed before international warnings. The results indicate that an all or none approach to decision making contributed to the delay in response. In the future, a phased approach balancing actions against increasing risk of an outbreak would be more effective. Given the time required to mobilize large vaccine stocks, emergency vaccination did not contribute to the mitigation of explosive outbreaks of RVF.* Address correspondence to Christine C. Jost, International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100 Kenya. E-mail: c.jost@cgiar.org 66 JOST AND OTHERS approach, participants were asked to focus on the period when the RVF outbreak was observed and to divide the individual piles of counters previously used to rank the livestock species by numbers into two sub-groups: those that developed RVF and those that did not. For those that had RVF, the counters were further subdivided into the proportion that died and the proportion that recovered. This method provided an estimate of the incidence of RVF in each species during the outbreak, as well as the outbreak case fatality rates and the overall mortality rate during the outbreak.Abortions attributable to RVF. Using the results of the proportional piling exercise for the relative numbers of each livestock species as the starting point, participants were asked to allocate the counters into two groups in proportion to those livestock that were pregnant before the RVF outbreak and those that were not. For the pregnant group, participants next divided the counters in proportion to those animals that aborted because of RVF and those that carried their pregnancies to full term. The pregnant pile was then restored, and participants asked to divide the counters to represent the proportions that would have been expected to abort in a normal year (with no RVF outbreak) and those that would have carried to full term. Supplementary questioning probed the causes of abortion other than RVF.Disease impact matrix score. For each livestock species a matrix was constructed on the ground, with benefits derived from that species along the y axis and diseases on the x axis. Participants were given 100 counters and asked to allocate them among the livestock-associated benefits according to the relative importance of each benefit, with the most important benefit receiving the highest number of counters. The counters for each benefit were then sub-allocated to each disease to show the relative negative ...
Rift Valley fever (RVF) is a vector‐borne disease transmitted by a broad spectrum of mosquito species, especially Aedes and Culex genus, to animals (domestic and wild ruminants and camels) and humans. Rift Valley fever is endemic in sub‐Saharan Africa and in the Arabian Peninsula, with periodic epidemics characterised by 5–15 years of inter‐epizootic periods. In the last two decades, RVF was notified in new African regions (e.g. Sahel), RVF epidemics occurred more frequently and low‐level enzootic virus circulation has been demonstrated in livestock in various areas. Recent outbreaks in a French overseas department and some seropositive cases detected in Turkey, Tunisia and Libya raised the attention of the EU for a possible incursion into neighbouring countries. The movement of live animals is the most important pathway for RVF spread from the African endemic areas to North Africa and the Middle East. The movement of infected animals and infected vectors when shipped by flights, containers or road transport is considered as other plausible pathways of introduction into Europe. The overall risk of introduction of RVF into EU through the movement of infected animals is very low in all the EU regions and in all MSs (less than one epidemic every 500 years), given the strict EU animal import policy. The same level of risk of introduction in all the EU regions was estimated also considering the movement of infected vectors, with the highest level for Belgium, Greece, Malta, the Netherlands (one epidemic every 228–700 years), mainly linked to the number of connections by air and sea transports with African RVF infected countries. Although the EU territory does not seem to be directly exposed to an imminent risk of RVFV introduction, the risk of further spread into countries neighbouring the EU and the risks of possible introduction of infected vectors, suggest that EU authorities need to strengthen their surveillance and response capacities, as well as the collaboration with North African and Middle Eastern countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.