Kongsfjorden‐Krossfjorden and the adjacent West Spitsbergen Shelf meet at the common mouth of the two fjord arms. This paper presents our most up‐to‐date information about the physical environment of this fjord system and identifies important gaps in knowledge. Particular attention is given to the steep physical gradients along the main fjord axis, as well as to seasonal environmental changes. Physical processes on different scales control the large‐scale circulation and small‐scale (irreversible) mixing of water and its constituents. It is shown that, in addition to the tide, run‐off (glacier ablation, snowmelt, summer rainfall and ice calving) and local winds are the main driving forces acting on the upper water masses in the fjord system. The tide is dominated by the semi‐diurnal component and the freshwater supply shows a marked seasonal variation pattern and also varies interannually. The wind conditions are characterized by prevailing katabatic winds, which at times are strengthened by the geostrophic wind field over Svalbard. Rotational dynamics have a considerable influence on the circulation patterns within the fjord system and give rise to a strong interaction between the fjord arms. Such dynamics are also the main reason why variations in the shelf water density field, caused by remote forces (tide and coastal winds), propagate as a Kelvin wave into the fjord system. This exchange affects mainly the intermediate and deep water, which is also affected by vertical convection processes driven by cooling of the surface and brine release during ice formation in the inner reaches of the fjord arms. Further aspects covered by this paper include the geological and geomorphological characteristics of the Kongsfjorden area, climate and meteorology, the influence of glaciers, freshwater supply, sea ice conditions, sedimentation processes as well as underwater radiation conditions. The fjord system is assumed to be vulnerable to possible climate changes, and thus is very suitable as a site for the demonstration and investigation of phenomena related to climate change.
The sum of winter accumulation and summer losses of mass from glaciers and ice sheets (net surface mass balance) varies with changing climate. In the Arctic, glaciers and ice caps, excluding the Greenland Ice Sheet, cover about 275,000 km2of both the widely glacierized archipelagos of the Canadian, Norwegian, and Russian High Arctic and the area north of about 60°N in Alaska, Iceland, and Scandinavia. Since the 1940s, surface mass balance time-series of varying length have been acquired from more than 40 Arctic ice caps and glaciers. Most Arctic glaciers have experienced predominantly negative net surface mass balance over the past few decades. There is no uniform recent trend in mass balance for the entire Arctic, although some regional trends occur. Examples are the increasingly negative mass balances for northern Alaska, due to higher summer temperatures, and increasingly positive mass balances for maritime Scandinavia and Iceland, due to increased winter precipitation. The negative mass balance of most Arctic glaciers may be a response to a step-like warming in the early twentieth century at the termination of the cold Little Ice Age. Arctic ice masses outside Greenland are at present contributing about 0.13 mm yr−1to global sea-level rise.
Knowledge about the spatio-temporal distribution of fast-flowing Arctic glaciers is still limited. Kronebreen, Svalbard, in particular, includes the confluence -and the dynamic interplay -of the fast-flowing Kronebreen and the currently slow-flowing Kongsvegen. In this study, image-matching techniques on the basis of repeated Landsat 7 Enhanced Thematic Mapper Plus (ETM+) pan and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data are applied in order to derive surface velocity fields of the lowermost 10 km of Kronebreen for the annual periods /02 and a 40 day period around July 2001. This work perfectly complements differential synthetic aperture radar interferometry (DInSAR) studies available for Kronebreen. A complete surface velocity field is now available from combining the DInSAR studies for the upper part of the glacier and the optical image-matching study presented here. The data obtained within this study are also compared to velocity data of 1964, 1986, 1990 and 1996. As also suggested by previous studies, a significant spatio-temporal variability of the spring/summer and annual ice speeds becomes evident.
Kongsbreen. a tide-water glacier located in Kongsfjorden. is the most active calving glacier in Svalbard. Three SPOT images are used to determine its flow speed and calving rate. The position of fourteen reference points was determined on the coast or mountain sides, and the changes in position of 144 characteristic features on the glacier surface were calculated. The obtained speed profiles are consistent with the findings from previous works from 1962-64 and 198S86. When comparing the obtained longitudinal profile to the data from 1962-64. it is found that the flow velocity at a given distance from the front has been nearly constant.The results from the SPOT images analysis are completed by using existing topographic works. The present study shows that SPOT images (panchromatic as well as multichannel), recorded with a periodicity of one year, can be used to determine precisely the annual flow speed and calving rate of active glaciers such as Kongsbrccn. Images recorded with a periodicity of two, three or four weeks can allow identical determination on tide-water glaciers during a surging active phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.