Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse ‘toolkit’ of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.
Animals are grouped into ~35 ‘phyla’ based upon the notion of distinct body plans1–4. Morphological and molecular analyses have revealed that a stage the middle of development—known as the phylotypic period—is conserved among species within some phyla5–9. While these analyses provide evidence for their existence, phyla have also been criticized as lacking an objective definition, and consequently based on arbitrary groupings of animals10. Here, we compare the developmental transcriptomes of ten species, each annotated to a different phylum, with a wide range of life histories and embryonic forms. We find that, in all ten species, development comprises the coupling of early and late phases of gene expression. These conserved phases are linked by a divergent ‘mid-developmental transition’ that deploys species-specific suites of signaling pathways and transcription factors. This mid-developmental transition overlaps with the phylotypic period that has been defined previously for three of the ten phyla, suggesting that transcriptional circuits and signaling mechanisms active during this transition are crucial for defining the phyletic body plan and that the mid-developmental transition may be used to define phylotypic periods in other phyla. Placing these observations alongside the reported conservation of mid-development within phyla, we propose that a phylum may be defined as a collection of species whose gene expression at the mid-developmental transition is both highly-conserved among them, yet divergent relative to species in other phyla.
The crown-of-thorns starfish (COTS, the Acanthaster planci species group) is a highly fecund predator of reef-building corals throughout the Indo-Pacific region 1 . COTS population outbreaks cause substantial loss of coral cover, diminishing the integrity and resilience of reef ecosystems 2-6 . Here we sequenced genomes of COTS from the Great Barrier Reef, Australia and Okinawa, Japan to identify gene products that underlie species-specific communication and could potentially be used in biocontrol strategies. We focused on water-borne chemical plumes released from aggregating COTS, which make the normally sedentary starfish become highly active. Peptide sequences detected in these plumes by mass spectrometry are encoded in the COTS genome and expressed in external tissues. The exoproteome released by aggregating COTS consists largely of signalling factors and hydrolytic enzymes, and includes an expanded and rapidly evolving set of starfish-specific ependymin-related proteins. These secreted proteins may be detected by members of a large family of olfactory-receptor-like G-protein-coupled receptors that are expressed externally, sometimes in a sex-specific manner. This study provides insights into COTS-specific communication that may guide the generation of peptide mimetics for use on reefs with COTS outbreaks.COTS are extremely fecund mass spawners 7 , which predisposes them to population outbreaks that result in a pronounced loss of live coral cover and associated biodiversity. These outbreaks have a higher impact on reef health and resilience than the combined effects of coral bleaching and disease, and increase the susceptibility of reefs to other potentially detrimental events, such as severe storms [2][3][4][5][6] (Supplementary Note 1).Although a range of local in situ control measures have been applied with some success (Supplementary Note 1), mitigation of COTS outbreaks on the necessary regional scale requires mass-deployed, species-specific strategies. In this context, genome-encoded COTSspecific attractants that underpin spawning aggregations have substantial potential as biocontrol agents. To identify attractants, we sequenced the genomes of two wild-caught individuals separated by over 5,000 km, one from the Great Barrier Reef (GBR), Australia and the other from Okinawa (OKI), Japan (Fig. 1c, d and Extended Data Fig. 1). We also sequenced transcriptomes from external organs, and proteins released into the seawater by COTS that were aggregating or were in the presence of their main predator, the giant triton Charonia tritonis (Fig. 1b).We generated separate 384 megabase (Mb) draft assemblies for the GBR and OKI genomes (Extended Data COTS genes are labelled and are marked with red lines; other asteroids, two shades of orange and yellow lines; sea urchins, dark green; hemichordates, light green; molluscs, pink; annelids, purple; cnidarians, black; and vertebrates, blue. The three clades to which COTS sequences belong are indicated by the outer circle. The asterisk denotes the fish-specific tru...
BackgroundThe origin of metazoan development and differentiation was contingent upon the evolution of cell adhesion, communication and cooperation mechanisms. While components of many of the major cell signalling pathways have been identified in a range of sponges (phylum Porifera), their roles in development have not been investigated and remain largely unknown. Here, we take the first steps toward reconstructing the developmental signalling systems used in the last common ancestor to living sponges and eumetazoans by studying the expression of genes encoding Wnt and TGF-β signalling ligands during the embryonic development of a sponge.Methodology/Principal FindingsUsing resources generated in the recent sponge Amphimedon queenslandica (Demospongiae) genome project, we have recovered genes encoding Wnt and TGF-β signalling ligands that are critical in patterning metazoan embryos. Both genes are expressed from the earliest stages of Amphimedon embryonic development in highly dynamic patterns. At the time when the Amphimedon embryos begin to display anterior-posterior polarity, Wnt expression becomes localised to the posterior pole and this expression continues until the swimming larva stage. In contrast, TGF-β expression is highest at the anterior pole. As in complex animals, sponge Wnt and TGF-β expression patterns intersect later in development during the patterning of a sub-community of cells that form a simple tissue-like structure, the pigment ring. Throughout development, Wnt and TGF-β are expressed radially along the anterior-posterior axis.Conclusions/SignificanceWe infer from the expression of Wnt and TGF-β in Amphimedon that the ancestor that gave rise to sponges, cnidarians and bilaterians had already evolved the capacity to direct the formation of relatively sophisticated body plans, with axes and tissues. The radially symmetrical expression patterns of Wnt and TGF-β along the anterior-posterior axis of sponge embryos and larvae suggest that these signalling pathways contributed to establishing axial polarity in the very first metazoans.
Hox and other Antennapedia (ANTP)-like homeobox gene subclasses - ParaHox, EHGbox, and NK-like - contribute to key developmental events in bilaterians [1-4]. Evidence of physical clustering of ANTP genes in multiple animal genomes [4-9] suggests that all four subclasses arose via sequential cis-duplication events. Here, we show that Hox genes' origin occurred after the divergence of sponge and eumetazoan lineages and occurred concomitantly with a major evolutionary transition in animal body-plan complexity. By using whole genome information from the demosponge Amphimedon queenslandica, we provide the first conclusive evidence that the earliest metazoans possessed multiple NK-like genes but no Hox, ParaHox, or EHGbox genes. Six of the eight NK-like genes present in the Amphimedon genome are clustered within 71 kb in an order akin to bilaterian NK clusters. We infer that the NK cluster in the last common ancestor to sponges, cnidarians, and bilaterians consisted of at least five genes. It appears that the ProtoHox gene originated from within this ancestral cluster after the divergence of sponge and eumetazoan lineages. The maintenance of the NK cluster in sponges and bilaterians for greater than 550 million years is likely to reflect regulatory constraints inherent to the organization of this ancient cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.