While significant progress has been made in understanding the molecular events underlying the early specification of the antero-posterior and dorso-ventral axes, little information is available regarding the cellular or molecular basis for left-right (LR) differences in animal morphogenesis. We describe the expression patterns of three genes involved in LR determination in chick embryos: activin receptor IIa, Sonic hedgehog (Shh), and cNR-1 (related to the mouse gene nodal). These genes are expressed asymmetrically during and after gastrulation and regulate the expression of one another in a sequential pathway. Moreover, manipulation of the sidedness of either activin protein or Shh expression alters heart situs. Together, these observations identify a cascade of molecular asymmetry in that determines morphological LR asymmetry in the chick embryo.
Animals are grouped into ~35 ‘phyla’ based upon the notion of distinct body plans1–4. Morphological and molecular analyses have revealed that a stage the middle of development—known as the phylotypic period—is conserved among species within some phyla5–9. While these analyses provide evidence for their existence, phyla have also been criticized as lacking an objective definition, and consequently based on arbitrary groupings of animals10. Here, we compare the developmental transcriptomes of ten species, each annotated to a different phylum, with a wide range of life histories and embryonic forms. We find that, in all ten species, development comprises the coupling of early and late phases of gene expression. These conserved phases are linked by a divergent ‘mid-developmental transition’ that deploys species-specific suites of signaling pathways and transcription factors. This mid-developmental transition overlaps with the phylotypic period that has been defined previously for three of the ten phyla, suggesting that transcriptional circuits and signaling mechanisms active during this transition are crucial for defining the phyletic body plan and that the mid-developmental transition may be used to define phylotypic periods in other phyla. Placing these observations alongside the reported conservation of mid-development within phyla, we propose that a phylum may be defined as a collection of species whose gene expression at the mid-developmental transition is both highly-conserved among them, yet divergent relative to species in other phyla.
Embryonic morphogenesis occurs along three orthogonal axes. While the patterning of the anterior-posterior and dorsal-ventral axes has been increasingly well characterized, the left-right (LR) axis has only recently begun to be understood at the molecular level. The mechanisms which ensure invariant LR asymmetry of the heart, viscera, and brain represent a thread connecting biomolecular chirality to human cognition, along the way involving fundamental aspects of cell biology, biophysics, and evolutionary biology. An understanding of LR asymmetry is important not only for basic science, but also for the biomedicine of a wide range of birth defects and human genetic syndromes. This review summarizes the current knowledge regarding LR patterning in a number of vertebrate and invertebrate species, discusses several poorly understood but important phenomena, and highlights some important open questions about the evolutionary origin and conservation of mechanisms underlying embryonic asymmetry.
Biased left-right asymmetry is a fascinating and medically important phenomenon. We provide molecular genetic and physiological characterization of a novel, conserved, early, biophysical event that is crucial for correct asymmetry: H + flux. A pharmacological screen implicated the H + -pump H + -V-ATPase in Xenopus asymmetry, where it acts upstream of early asymmetric markers. Immunohistochemistry revealed an actin-dependent asymmetry of H + -V-ATPase subunits during the first three cleavages. H + -flux across plasma membranes is also asymmetric at the four-and eight-cell stages, and this asymmetry requires H + -V-ATPase activity. Abolishing the asymmetry in H + flux, using a dominant-negative subunit of the H + -V-ATPase or an ectopic H + pump, randomized embryonic situs without causing any other defects. To understand the mechanism of action of H + -V-ATPase, we isolated its two physiological functions, cytoplasmic pH and membrane voltage (V mem ) regulation. Varying either pH or V mem , independently of direct manipulation of H + -V-ATPase, caused disruptions of normal asymmetry, suggesting roles for both functions. V-ATPase inhibition also abolished the normal early localization of serotonin, functionally linking these two early asymmetry pathways. The involvement of H + -V-ATPase in asymmetry is conserved to chick and zebrafish. Inhibition of the H + -V-ATPase induces heterotaxia in both species; in chick, H + -V-ATPase activity is upstream of Shh; in fish, it is upstream of Kupffer's vesicle and Spaw expression. Our data implicate H + -V-ATPase activity in patterning the LR axis of vertebrates and reveal mechanisms upstream and downstream of its activity. We propose a pH-and V mem -dependent model of the early physiology of LR patterning. Development 133, 1657Development 133, -1671Development 133, (2006 DEVELOPMENT 1658 necessary to characterize the endogenous behavior of the relevant pumps in embryos and to place their function in the context of known LR patterning mechanisms. Here, we explore the properties of H + -V-ATPase function in several vertebrate embryos. Through endogenous localization of the H + -V-ATPase and gain-and loss-offunction experiments in chick, frog and zebrafish, we identify the H + -V-ATPase as a novel, conserved, obligate component of LR patterning upstream of asymmetric gene expression. KEY WORDS: Left-right asymmetry, H + -V-ATPase, V-ATPase, Xenopus, Chick, Zebrafish, Axial patterning, Cytoplasmic pH, Membrane voltage MATERIALS AND METHODS Animal husbandryXenopus embryos were collected according to standard protocols (Sive et al., 2000) in 0.1ϫ Modified Marc's Ringers (MMR) pH 7.8 + 0.1% Gentamicin. Xenopus embryos were staged according to Nieuwkoop and Faber (Nieuwkoop and Faber, 1967). Chick embryos from Charles River Laboratories, maintained at 38°C, were staged according to Hamburger and Hamilton (Hamburger and Hamilton, 1992). Zebrafish embryos (Westerfield, 1995) were maintained at 28.5°C in water containing 1 drop per gallon Methyl Blue. Assaying organ situsXenopus e...
In many systems, ion flows and long-term endogenous voltage gradients regulate patterning events, but molecular details remain mysterious. To establish a mechanistic link between biophysical events and regeneration, we investigated the role of ion transport during Xenopus tail regeneration. We show that activity of the V-ATPase H+ pump is required for regeneration but not wound healing or tail development. The V-ATPase is specifically upregulated in existing wound cells by 6 hours post-amputation. Pharmacological or molecular genetic loss of V-ATPase function and the consequent strong depolarization abrogates regeneration without inducing apoptosis. Uncut tails are normally mostly polarized, with discrete populations of depolarized cells throughout. After amputation, the normal regeneration bud is depolarized, but by 24 hours post-amputation becomes rapidly repolarized by the activity of the V-ATPase, and an island of depolarized cells appears just anterior to the regeneration bud. Tail buds in a non-regenerative `refractory' state instead remain highly depolarized relative to uncut or regenerating tails. Depolarization caused by V-ATPase loss-of-function results in a drastic reduction of cell proliferation in the bud, a profound mispatterning of neural components, and a failure to regenerate. Crucially, induction of H+ flux is sufficient to rescue axonal patterning and tail outgrowth in otherwise non-regenerative conditions. These data provide the first detailed mechanistic synthesis of bioelectrical,molecular and cell-biological events underlying the regeneration of a complex vertebrate structure that includes spinal cord, and suggest a model of the biophysical and molecular steps underlying tail regeneration. Control of H+ flows represents a very important new modality that, together with traditional biochemical approaches, may eventually allow augmentation of regeneration for therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.