Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step i n the biosynthesis of the lignin precursors, the monolignols. We have down-regulated CAD in transgenic poplar (Popuhs tremula x Populus alba) by both antisense and co-suppression strategies. Severa1 antisense and sense CAD transgenic poplars had an approximately 70% reduced CAD activity that was associated with a red coloration of the xylem tissue. Neither the lignin amount nor the lignin monomeric composition (syringyl/guaiacyl) were significantly modified. However, phloroglucinol-HCI staining was different i n the down-regulated CAD plants, suggesting changes in the number of aldehyde units in the lignin. Furthermore, the reactivity of the cell wall toward alkali treatment was altered: a lower amount of lignin was found i n the insoluble, saponified residue and more lignin could be precipitated from the soluble alkali fraction. Moreover, large amounts of phenolic compounds, vanillin and especially syringaldehyde, were detected in the soluble alkali fraction of the CAD down-regulated poplars. Alkaline pulping experiments on 3-month-old trees showed a reduction of the kappa number without affecting the degree of cellulose degradation. These results indicate that reducing the CAD activity i n trees might be a valuable strategy to optimize certain processes of the wood industry, especially those of the pulp and paper industry.
SummaryBrown-midrib (bm) mutants of maize have modified lignin of reddish-brown colour. Although four independent bm loci are known, only one of the mutant genes has been previously identified. We report here that maize bm1, one of the less characterised mutants, shows severely reduced CAD activity in lignified tissues, resulting in the production of a modified lignin. Both the total lignin content and the structure of the polymer are altered by the mutation. We further describe the isolation and characterisation of the maize CAD cDNA and mapping of the CAD gene. CAD maps very closely to the known location of bm1 and co-segregates with the bm1 locus in two independent recombinant inbred populations. These data strongly support the premise that maize bm1 directly affects expression of the CAD gene.
Lignin is a polymeric constituent of the cell wall that needs to be removed during the paper making process. Bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT) catalyses the O-methylation of caffeic acid and 5-hydroxyferulic acid to ferulic acid and sinapic acid, respectively. These compounds are intermediates in the biosynthesis of the lignin precursors. Therefore, COMTs are potential target enzymes for reducing the amount, or modifying the composition, of lignin in plants. Different antisense and sense constructs have been expressed of a gene encoding a COMT from poplar (Populus trichocarpa X II: deltoides) in a I! tremula X P. alba clone under the control of the cauliflower mosaic virus 35S promoter. From all analysed transformants, four lines transformed with an antisense construct had a reduced COMT activity. Two showed a 50% reduction of COMT activity, which altered only slightly the monomeric composition. In the two other transform ants, the COMT activity was reduced by 95%. In the latter case, the syringyl/guaiacyl ratio (S/G) was reduced by sixfold (due to a decrease of S and an increase of G), as analysed by thioacidolysis. A new component of lignin, the 5-hydroxy-guaiacyl residue, was detected among the thioacidolysis products. Moreover, in contrast to the white/yellow colour of wild-type wood, the xylem of the transgenic lines with a 95% reduction of COMT activity was pale rose. A similar phenotype was observed in brown-midrib mutants of maize and sorghum, known for their altered lignification. Although the lignin composition was consistently modified, the lignin content of the transgenic poplars was similar to that of the controls
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.