Substandard and falsified (SF) medicines are a global issue contributing to antimicrobial resistance and causing economic and humanitarian harm. To direct law enforcement efficiently, halt the spread of SF medicines and antimicrobial resistance, academics, NGOs and government organisations use medicine quality sampling studies to estimate the prevalence of the problem. A systematic review of medicine quality studies was conducted to estimate how the methodological quality of these studies and SF prevalence has changed between 2013 and 2018. We also aimed to critique medicine sampling study methodologies, and the systematic review process which generates prevalence estimates. Based on 33 studies, the overall estimated median (Q1–Q3) prevalence of SF medicines appears to have remained high at 25% (7.7%–34%) compared with 28.5% in 2013. Furthermore, the methodological quality of prevalence studies has improved over the last 25 years. Definitive conclusions regarding the prevalence of SF medicines cannot be drawn due to the variability in sample sizes, consistency of design methods, and a lack of information concerning contextual factors affecting medicine quality studies. We contend that studies which present cumulative average prevalence figures are useful in a broad sense but could be improved to create more reliable estimates. We propose that medicine quality studies record the context of the study environment to allow systematic reviewers to compare like with like. Although, the academic rigour of medicine quality studies is improving, medicine sampling study limitations still exist. These limitations inhibit the accurate estimation of SF medicine prevalence which is needed to support detailed policy changes.
ObjectivesTo identify the authentication and detection rate of serialised medicines using medicines authentication technology.Design and intervention4192 serialised medicines were entered into a hospital dispensary over two separate 8-week stages in 2015. Medicines were authenticated using secure external database cross-checking, triggered by the scanning of a two-dimensional data matrix with a unit specific 12-digit serial code. 4% of medicines included were preprogrammed with a message to identify the product as either expired, pack recalled, product recalled or counterfeit.SettingA site within a large UK National Health Service teaching hospital trust.ParticipantsAccredited checking staff, pharmacists and dispensers in a pharmacy department.Primary outcome measuresAuthentication and detection rate of counterfeit expired and recalled medicines.ResultsThe operational detection rate of counterfeit, recalled and expired medicines scanned as a combined group was 81.4% (stage 1 (S1)) and 87% (stage 2 (S2)). The technology's technical detection rate (TDR) was 100%; however, not all medicines were scanned and of those that were scanned not all that generated a warning message were quarantined. Owing to an operational authentication rate (OAR) of 66.3% (over both stages), only 31.8% of counterfeit medicines, 58% of recalled drugs and 64% of expired medicines were detected as a proportion of those entered into the study. Response times (RTs) of 152 ms (S1) and 165 ms (S2) were recorded, meeting the falsified medicines directive-mandated 300 ms limit.ConclusionsTDRs and RTs were not a limiting factor in this study. The suboptimal OAR poses significant quality and safety issues with this detection approach. Authentication at the checking stage, however, demonstrated higher OARs. There is a need for further qualitative research to establish the reasons for less than absolute authentication and detection rates in the hospital environment to improve this technology in preparation for the incumbent European Union regulative deadline.
ObjectivesThis study aims to establish expert opinion and potential improvements for the Falsified Medicines Directive mandated medicines authentication technology.Design and interventionA two-round Delphi method study using an online questionnaire.SettingLarge National Health Service (NHS) foundation trust teaching hospital.ParticipantsSecondary care pharmacists and accredited checking technicians.Primary outcome measuresSeven-point rating scale answers which reached a consensus of 70–80% with a standard deviation (SD) of <1.0. Likert scale questions which reached a consensus of 70–80%, a SD of <1.0 and classified as important according to study criteria.ResultsConsensus expert opinion has described database cross-checking technology as quick and user friendly and suggested the inclusion of an audio signal to further support the detection of counterfeit medicines in secondary care (70% consensus, 0.9 SD); other important consensus with a SD of <1.0 included reviewing the colour and information in warning pop up screens to ensure they were not mistaken for the ‘already dispensed here’ pop up, encouraging the dispenser/checker to act on the warnings and making it mandatory to complete an ‘action taken’ documentation process to improve the quarantine of potentially counterfeit, expired or recalled medicines.ConclusionsThis paper informs key opinion leaders and decision makers as to the positives and negatives of medicines authentication technology from an operator's perspective and suggests the adjustments which may be required to improve operator compliance and the detection of counterfeit medicines in the secondary care sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.