Epstein-Barr virus-induced gene 3 (EBI3) and the p35 subunit of IL-12 have been reported to form a heterodimeric hematopoietin in human and mouse. We have constructed a heterodimeric protein covalently linking EBI3 and p35, to form a novel cytokine which we now call IL-35. The
3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors (statins) exert favorable effects on lipoprotein metabolism, but may also possess anti-inflammatory properties. Therefore, we explored the activities of simvastatin, a lipophilic statin, in a Th1-driven model of murine inflammatory arthritis. We report in this study that simvastatin markedly inhibited not only developing but also clinically evident collagen-induced arthritis in doses that were unable to significantly alter cholesterol concentrations in vivo. Ex vivo analysis demonstrated significant suppression of collagen-specific Th1 humoral and cellular immune responses. Moreover, simvastatin reduced anti-CD3/anti-CD28 proliferation and IFN-γ release from mononuclear cells derived from peripheral blood and synovial fluid. Proinflammatory cytokine production in vitro by T cell contact-activated macrophages was suppressed by simvastatin, suggesting that such observations have direct clinical relevance. These data clearly illustrate the therapeutic potential of statin-sensitive pathways in inflammatory arthritis.
Statins, the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, are effective serum cholesterol-lowering agents in clinical practice, and they may also have anti-inflammatory properties. Asthma is characterized by chronic eosinophilic inflammation in the airways, which is thought to be regulated by the activity of T lymphocytes. We therefore examined the anti-inflammatory activity of simvastatin in a murine model of allergic asthma. In mice previously sensitized to OVA, simvastatin treatment, either orally or i.p., reduced the total inflammatory cell infiltrate and eosinophilia in bronchoalveolar lavage fluid in response to inhaled OVA challenge. Simvastatin therapy i.p. was also associated with a reduction in IL-4 and IL-5 levels in bronchoalveolar lavage fluid and, at higher doses, a histological reduction in inflammatory infiltrates in the lungs. OVA-induced IL-4, IL-5, IL-6, and IFN-γ secretion was reduced in thoracic lymph node cultures from simvastatin-treated mice. Simvastatin treatment did not alter serum total IgE or OVA-specific IgG1 and IgG2a levels. These data demonstrate the therapeutic potential of statin-sensitive pathways in allergic airways disease.
IL-18 expression and functional activity has been identified in several autoimmune and infectious diseases. To clarify the potential role of IL-18 during early innate immune responses, we have explored the capacity of IL-18 to activate neutrophils. Human peripheral blood-derived neutrophils constitutively expressed IL-18R (α and β) commensurate with the capacity to rapidly respond to IL-18. IL-18 induced cytokine and chemokine release from neutrophils that was protein synthesis dependent, up-regulated CD11b expression, induced granule release, and enhanced the respiratory burst following exposure to fMLP, but had no effect upon the rate of neutrophil apoptosis. The capacity to release cytokine and chemokine was significantly enhanced in neutrophils derived from rheumatoid arthritis synovial fluid, indicating differential responsiveness to IL-18 dependent upon prior neutrophil activation in vivo. Finally, IL-18 administration promoted neutrophil accumulation in vivo, whereas IL-18 neutralization suppressed the severity of footpad inflammation following carrageenan injection. The latter was accompanied by reduction in tissue myeloperoxidase expression and suppressed local TNF-α production. Together, these data define a novel role for IL-18 in activating neutrophils and thereby promoting early innate immune responses.
Understanding modulation of the host immune system by pathogens offers rich therapeutic potential. Parasitic filarial nematodes are often tolerated in human hosts for decades with little evidence of pathology and this appears to reflect parasite-induced suppression of host proinflammatory immune responses. Consistent with this, we have previously described a filarial nematode-derived, secreted phosphorylcholine-containing glycoprotein, ES-62, with immunomodulatory activities that are broadly anti-inflammatory in nature. We sought to evaluate the therapeutic potential of ES-62 in vitro and in vivo in an autoimmune disease model, namely, collagen-induced arthritis in DBA/1 mice. ES-62 given during collagen priming significantly reduced initiation of inflammatory arthritis. Crucially, ES-62 was also found to suppress collagen-induced arthritis severity and progression when administration was delayed until after clinically evident disease onset. Ex vivo analyses revealed that in both cases, the effects were associated with inhibition of collagen-specific pro-inflammatory/Th1 cytokine (TNF-α, IL-6, and IFN-γ) release. In parallel in vitro human tissue studies, ES-62 was found to significantly suppress macrophage activation via cognate interaction with activated T cells. Finally, ES-62 suppressed LPS-induced rheumatoid arthritis synovial TNF-α and IL-6 production. Evolutionary pressure has promoted the generation by pathogens of diverse mechanisms enabling host immune system evasion and induction of “tolerance.” ES-62 represents one such mechanism. We now provide proof of concept that parasite-derived immunomodulatory strategies offer a novel therapeutic opportunity in inflammatory arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.