Background: Peach is a common elicitor of food allergic reactions. Peach-induced immediate reactions may occur as benign pollen-food syndromes, usually due to birch pollen-related PR-10 cross-reactivity in temperate climates, and as potentially severe primary food allergies, predominantly related to nsLTP Pru p 3 in Mediterranean regions. The newly described peach allergen Pru p 7 has gained recent attention as a potential peach allergy severity marker. Sensitization to Pru p 7 and its allergenic homologues of the gibberellin-regulated protein family occurs in areas with high Cupressaceae tree pollen exposure. Objective:We sought to investigate the distribution, clinical characteristics and molecular associations of Pru p 7 sensitization among subjects with suspected peach allergy in different regions of France. Methods: Subjects with suspected peach allergy (n = 316) were included. Diagnostic work-up was performed according to current guidelines, including open food challenge when required. IgE antibody measurements and competition experiments were performed using the ImmunoCAP assay platform. Results: Sensitization to Pru p 7 was present in 171 (54%) of all subjects in the study and in 123 of 198 (62%) diagnosed as peach allergic, more than half of whom were sensitized to no other peach allergen. Frequency and magnitude of Pru p 7 sensitization were associated with the presence of peach allergy, the clinical severity of peach-induced allergic reactions and the level of cypress pollen exposure. Cypress pollen extract completely outcompeted IgE binding to Pru p 7. Pru p 7 was extremely potent in basophil activation tests. Conclusion and Clinical Relevance: A subtype of Cupressaceae pollinosis, characterized by Pru p 7 sensitization, can be an underlying cause of severe peach allergy. K E Y W O R D S allergens and epitopes, anaphylaxis, basophil, cypress pollinosis, food allergy, IgE, immunological tests, peamaclein, Pru p 7
Low-field (0.02--4 MHz) proton nuclear magnetic resonance (NMR) longitudinal relaxometry was applied to ultrahighly diluted aqueous solutions in order to detect physical modifications induced in the solvent by the dilution process. A mixture of silica-lactose (1.67.10 -5 M silica, 2.92-10 -2 M lactose) was initially solubilized in water or in saline, then submitted to eighteen iterative centesimal dilutions in water or in saline under vigorous vortex agitation and rigorously controlled atmospheric conditions, and compared to similarly treated pure water and saline as controls. Several independent series of samples were measured according to a blind protocol (total of 140 code-labelled samples). A slight frequency dispersion (about 4%) was found within the 0.02-4 MHz range, centered around 0.55 MHz, and ascribed to combined effects of silica and trace paramagnetic contaminants, both concentrated and in a reduced motion at the borosilicate wall tube interface. The iterative dilutionagitation process in pure water and saline induced no significant effect on relaxivity. Slightly increased relaxivity compared to solvent was found in the initial silica-lactose dilution (especially in saline, about 4%), which vanished unexpectedly slowly upon dilution, as adjusted to an arbitrary log-linear model. Statistical analysis was applied to succeed in discriminating solutions from their solvents beyond the 10 -~z level of dilution. No clear explanation emerged, but post-experiment chemical analysis revealed high amounts (6 ppm) of released silica from the glass mate¡ used, with excess in silicalactose samples, and lower amounts of trace paramagnetic contaminants in highly diluted silica-lactose samples, which could provide a clue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.