The natural abundance of N showed no correlation with urea-N recycling or rumen NH 3 absorption, but exhibited a strong correlation with liver urea synthesis and splanchnic amino acid metabolism, which points to a dominant role of splanchnic tissues in the present N isotopic fractionation study. Key words: Feed efficiency: Isotopic fractionation: Nitrogen utilisation: RuminantsThe human population is expected to increase about 34 % by 2050, creating a 50 % increase in the demand for dairy and beef products on existing natural and land resources (1) .In this context, current livestock production systems need to evolve towards improving the efficiency with which ruminants transform feeds into foods (feed conversion efficiency (FCE); body-weight (BW) gain or milk yield/DM intake), which is lower and more variable than in other farmed species (2) .However, in practice, assessing animal FCE is costly and laborious, mainly due to the need to accurately quantify individual feed intakes over a long period. The efficiency of nitrogen utilisation (ENU; animal N gain or milk N secretion/N intake) is an important component of FCE in growing beef cattle (3) and dairy cows (4) , and is also directly related to environmental N pollution associated with livestock production (5) . However, ENU is even more laborious and difficult to measure than FCE because it also requires analysis of feed N content, refusal N content, and animal BW gain or milk yield. Predictions of ENU require good knowledge of the multiple factors that affect N partitioning across digestive and metabolic compartments, or alternatively the use of indicators that reflect N utilisation at rumen and wholebody levels. N naturally exists in the form of two stable isotopes, i.
Ruminants fed high-forage diets usually have a low feed efficiency, and their performances might be limited by methionine (Met) supply. However, the INRA feeding system for growing cattle does not give recommendation for this amino acid (AA). This study aimed to assess the effects of Met-balanced diets on animal performance and N metabolism in young bulls fed high-forage diets formulated at or above protein requirements. Four diets resulting from a factorial arrangement of two protein levels (Normal (13·5 % crude protein) v. High (16·2 % crude protein)) crossed with two Met concentrations (unbalanced (2·0 % of metabolisable protein) v. balanced (2·6 % of metabolisable protein)) were tested on thirty-four fattening Charolais bulls for 7 months before slaughter. Animal growth rate was greater in Met-balanced diets (+8 %; P = 0·02) with a trend for a greater impact in High v. Normal protein diets (P = 0·10). This trend was observed in lower plasma concentrations of branched-chain AA only when Met supplementation was applied to the Normal protein diet (P ≤ 0·06) suggesting another co-limiting AA at Normal protein level. Feed conversion efficiency and N use efficiency were unaffected by Met supplementation (P > 0·05). However, some plasma indicators suggested a better use of AA when High protein diets were balanced v. unbalanced in Met. The proportion of total adipose tissue in carcass increased (+5 percent units; P = 0·03), whereas that of muscle decreased on average 0·8 percent units (P = 0·05) in Met-balanced diets. Our results justify the integration of AA into dietary recommendations for growing cattle.
Energy feeding systems define energy as a whole, but progress made to define metabolizable energy (ME) as the sum of the metabolizable nutrients produced by digestion and available for tissue metabolism in a wide range of nutritional situations opens the way to quantitatively model and predict nutrient fluxes between and within tissues and organs and improve predictions of energy use. This review addresses the contribution of nutrient flux concepts and data to the evolution of the Institut de la Recherche Agronomique (INRA) energy feeding system for growing and fattening cattle and evaluates the outcomes on the net energy (NE) requirements. It summarizes recent progress made to quantitatively predict nutrient fluxes both at digestive and visceral levels. It reviews how nutrient flux concepts and results were introduced in the recently updated INRA feeding system, resulting in improvements in the accuracy of the revised digestible energy (DE) and ME value of diets. The use of an independent database showed that for diets fed to fattening cattle, DE and ME concentrations were downgraded for low-energy-dense diets and upgraded for high-energy-dense diets. We are also showing that compared with its previous version, the updated INRA system improves the quantitative relationship between ME supply and flows of metabolizable nutrients. Evidence is provided on how measured nutrient fluxes at portal level were used to evaluate the predicted flows of metabolizable nutrients. This review then revisits the NE values of diets for fattening cattle as defined by the INRA feeding system and not updated yet. Using an independent database and at similar ME intake, carcass composition was shown to be linearly related to the energy density of diets for fiber-rich diets but not for concentrate-rich diets, suggesting that the efficiency of energy utilization of ME into NE is not linearly related to differences in the composition of the gain. Accounting for the balance of metabolizable nutrients or their proxies in models used to predict carcass composition from ME intake can improve predictions. Overall partitioning aggregated energy fluxes into their subcomponent nutrient fluxes in a more physiological approach offers promising perspectives for the evolution of NE feeding systems.
The objective of this study was to test two candidate biomarkers of feed efficiency in growing cattle. A database was built using performance data from 13 trials conducted with growing heifers, steers and young bulls and testing 34 dietary treatments. Different breeds were used with Charolais (37%), Simmental (15%), and cross-bred (40%) cattle being the most numerous. The database included 759 individual records for animal performance and laboratory data for N isotopic discrimination measured in plasma or muscle (∆ 15 N animal-diet ; n = 749) and plasma urea concentration (n = 659). Feed conversion efficiency (FCE) and residual feed intake (RFI) criteria were calculated for a duration ranging between 56 and 259 d, depending on the trial. For FCE prediction, mixed models included the random effects of study, treatment within-study and pen within-study (i.e. contemporary group; CG) allowing these effects to be progressively excluded from the relationship. For RFI prediction, simple linear regressions were tested with the CG effect removed from biomarker values before analysis. Better models were obtained with ∆ 15 N animal-diet compared to plasma urea concentration, irrespective of using mean or individual values and regardless of the feed efficiency criterion. Prediction error (0.027 kg/kg) from mixed-effect models using mean FCE and ∆ 15 N animal-diet values would allow discrimination of 2 dietary treatments or production conditions in terms of FCE if they differ by more than 0.10 kg/kg. The ∆ 15 N animal-diet values showed a negative and significant (P<0.001) relationship with FCE at the individual level and results highlighted that it is possible to significantly discriminate two animals randomly selected from the same CG if they differ by at least 0.06 kg/kg FCE. In addition, the top 20% highest and lowest animals within-CG in terms of RFI and FCE (extreme animals) showed significant (P<0.001) differences in ∆ 15 N animal-diet values, while only extreme FCE animals could be discriminated when using plasma urea concentrations (P=0.002). No gain in feed efficiency prediction was observed when combining candidate biomarkers. However, when average daily gain data was combined with ∆ 15 N animal-diet , the prediction of FCE at the individual level was strengthened compared to using only one of them, in which case average daily gain was the best single predictor. Our findings confirm that ∆ 15 N animal-diet may be useful to form groups of animals for precision feeding when feed intake and body weight gain are not available. Further studies are warranted, however, to evaluate the usefulness of this promising biomarker for genetic selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.