Summary
There is a growing need for new formulations of carriers with better protection for bacterial inoculum. One of the newer techniques in inoculum making is encapsulation method. With this method, the whole bacterial cells are immobilized in defined space – matrix, where the cells are protected from environmental activities before use. Encapsulation of the inoculum was performed with ionic gelation method. The alginate-based microparticles (500-600 µm) containing viable B. japonicum strain were solidified in CaCl2. The initial number of viable bacteria in every sample was 9.0 log CFU/ml. Chitosan coated particles had a higher mortality rate than non-coated particles, with 1.3 log CFU/ml in lyophilized and wet microparticles stored at room temperature. High viability of B. japonicum was registered in wet particles stored at constant −20°C for thirty days with a viability rate of 8.84 log CFU/ml.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.