Abstract:Accurate cropland maps at the global and local scales are crucial for scientists, government and nongovernment agencies, farmers and other stakeholders, particularly in food-insecure regions, such as Sub-Saharan Africa. In this study, we aim to qualify the crop classes of the MODIS Land Cover Product (LCP) in Sub-Saharan Africa using FAO (Food and Agricultural Organisation) and AGRHYMET (AGRiculture, Hydrology and METeorology) statistical data of agriculture and a sample of 55 very-high-resolution images. In terms of cropland acreage and dynamics, we found that the correlation between the statistical data and MODIS LCP decreases when we localize the spatial scale (from R 2 = 0.86 *** at the national scale to R 2 = 0.26 *** at two levels below the national scale). In terms of the cropland spatial distribution, our findings indicate a strong relationship between the user accuracy and the fragmentation of the agricultural landscape, as measured by the MODIS LCP; the accuracy decreases as the crop fraction increases. In addition, thanks to the Pareto boundary method, we were able to isolate and quantify the part of the MODIS classification error that could be directly linked to the performance of the adopted classification algorithm. Finally, based on these results, (i) a regional map of the MODIS LCP user accuracy estimates for cropland classes was produced for the entire Sub-Saharan region; this map presents a better accuracy in the western part of the region (43%-70%) compared to the eastern part (17%-43%); (ii) Theoretical user and producer accuracies for OPEN ACCESS Remote Sens. 2014, 6 8542 a given set of spatial resolutions were provided; the simulated future Sentinel-2 system would provide theoretical 99% user and producer accuracies given the landscape pattern of the region.
For the semi-arid Sahelian region, climate variability is one of the most important risks of food insecurity. Field experimentations as well as crop modelling are helpful tools for the monitoring and the understanding of yields at local scale. However, extrapolation of these methods at a regional scale remains a demanding task. Remote sensing observations appear as a good alternative or addition to existing crop monitoring systems. In this study, a new approach based on the combination of vegetation and thermal indices for rainfed cereal yield assessment in the Sahelian region was investigated. Empirical statistical models were developed between MODIS NDVI and LST variables and the crop model SARRA-H simulated aboveground biomass and harvest index in order to assess each component of the yield equation. The resulting model was successfully applied at the Niamey Square Degree (NSD) site scale with yield estimations close to the official agricultural statistics of Niger for a period of 11 years (2000-2011) (r=0.82, pvalue<0.05). The combined NDVI and LST indices based model was found to clearly outperform the model based on NDVI alone (r=0.59, pvalue<0.10). In areas where access to ground measurements is difficult, a simple, robust and timely satellite-based model combining vegetation and 2 thermal indices from MODIS and calibrated using crop model outputs, can be pertinent. In particular, such a model can provide an assessment of the year-to-year yield variability shortly after harvest for regions with agronomic and climate characteristics close to those of the NSD study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.