Identifying beneficial oral bacteria and understanding how they inhibit pathogens might help to unravel the mechanisms behind dysbiotic oral diseases. In this context, this study points towards an important role for hydrogen peroxide. The latter might lead in the future to novel preventive strategies for oral health based on improving the antimicrobial properties of commensal oral bacteria.
Oral rehabilitation aims to restore the aesthetic and function of the stomatognathic and phonetic systems, providing quality of life for the patients. To reach this objective, dental implants have been applied with high rates of success (Moraschini, Velloso, Luz, & Porto-Barboza, 2015; Nicoli et al., 2017). Nevertheless, placing implants in the correct position by freehand conventional techniques is chal
The aim of this study was to evaluate the density and the morphological aspects of biofilms adhered to different materials applied in oral rehabilitation supported by dental implants. Sixty samples were divided into four groups: feldspar-based porcelain, CoCr alloy, commercially pure titanium grade IV and yttria-stabilized zirconia. Human saliva was diluted into BHI supplemented with sucrose to grow biofilms for 24 or 48 h. After this period, biofilm was removed by 1% protease treatment and then analyzed by spectrophotometry (absorbance), colony forming unit method (CFU.cm-2) and field-emission guns scanning electron microscopy (FEG-SEM). The highest values of absorbance and CFU.cm-2 were recorded on biofilms grown on CoCr alloys when compared to the other test materials for 24 or 48 h. Also, FEG-SEM images showed a high biofilm density on CoCr. There were no significant differences in absorbance and CFU.cm-2 between biofilms grown on zirconia, porcelain and titanium (p<0.05). Microbiological assays associated with microscopic analyses detected a higher accumulation of oral biofilms on CoCr-based materials than that on titanium or zirconia that are used for prosthetic structures.
ObjectiveThe aim of this study was to evaluate the relationship between the number of pillar implants of implant-supported fixed prostheses and the prevalence of periimplant disease.Material and MethodsClinical and radiographic data were obtained for the evaluation. The sample consisted of 32 patients with implant-supported fixed prostheses in function for at least one year. A total of 161 implants were evaluated. Two groups were formed according to the number of implants: G1) ≤5 implants and G2) >5 implants. Data collection included modified plaque index (MPi), bleeding on probing (BOP), probing depth (PD), width of keratinized mucosa (KM) and radiographic bone loss (BL). Clinical and radiographic data were grouped for each implant in order to conduct the diagnosis of mucositis or peri-implantitis.ResultsClinical parameters were compared between groups using Student's t test for numeric variables (KM, PD and BL) and Mann-Whitney test for categorical variables (MPi and BOP). KM and BL showed statistically significant differences between both groups (p<0.001). Implants from G1 – 19 (20.43%) – compared with G2 – 26 (38.24%) – showed statistically significant differences regarding the prevalence of peri-implantitis (p=0.0210).ConclusionIt seems that more than 5 implants in total fixed rehabilitations increase bone loss and consequently the prevalence of implants with periimplantitis. Notwithstanding, the number of implants does not have any influence on the prevalence of mucositis.
Bioactive glass is an attractive biomaterial that has shown excellent osteogenic and angiogenic effects for oral bone repairing procedures. However, anti-biofilm potential related to such biomaterial has not been completely validated, mainly against multi-species biofilms involved in early tissue infections. The aim of the present study was to evaluate the anti-biofilm effect of 58 S bioactive glass embedding calcium bromide compounds at different concentrations. Bioactive glass free or containing 5, or 10 wt % CaBr was synthesized by alkali sol-gel method and then characterized by physco-chemical analyses and scanning electron microscopy (SEM). Then, samples were tested by microbiological assays using optical density, real time q-PCR, and SEM. Bioactive glass particles showed accurate chemical composition and an angular shape with a bimodal size distribution ranging from 0.6 to 110 µm. The mean particle size was around 29 µm. Anti-biofilm effect was recorded for 5 wt % CaBr -doped bioactive glass against S. mitis, V. parvula, P. gingivais, S. gordoni, A. viscosus, F, nucleatum, P. gingivais. F. nucleatum, and P. gingivalis. Such species are involved in the biofilm structure related to infections on hard and soft tissues in the oral cavity. The incorporation of calcium bromide into bioactive glass can be a strategy to enhance the anti-biofilm potential of bioactive glasses for bone healing and infection treatment. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1994-2003, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.