he early diagnosis of corneal ectasia is of foremost importance in both screening for refractive surgery and the early treatment of keratoconus. Topography or tomography analysis using either videokeratography or optical coherence tomography instruments can help detect alteration in the shape of the cornea such as thinning and increased curvature. However, these instruments cannot measure the mechanical stability, which is thought to be the initiating event of the disease, even before notable changes in corneal morphology take place.1,2 For this reason, there has been increasing interest in developing instruments to measure the in vivo biomechanical properties of the cornea to aid the diagnosis of an ectasia in a "biomechanical" stage, when topography and tomography are nor-T ABSTRACT PURPOSE: To evaluate the ability of a new combined biomechanical index called the Corvis Biomechanical Index (CBI) based on corneal thickness profile and deformation parameters to separate normal from keratoconic patients.METHODS: Six hundred fifty-eight patients (329 eyes in each database) were included in this multicenter retrospective study. Patients from two clinics located on different continents were selected to test the capability of the CBI to separate healthy and keratoconic eyes in more than one ethnic group using the Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany). Logistic regression was employed to determine, based on Database 1 as the development dataset, the optimal combination of parameters to accurately separate normal from keratoconic eyes. The CBI was subsequently independently validated on Database 2. RESULTS:The CBI included several dynamic corneal response parameters: deformation amplitude ratio at 1 and 2 mm, applanation 1 velocity, standard deviation of deformation amplitude at highest concavity, Ambrósio's Relational Thickness to the horizontal profile, and a novel stiffness parameter. The receiver operating characteristic curve analysis of the training database showed an area under the curve of 0.983. With a cut-off value of 0.5, 98.2% of the cases were correctly classified with 100% specificity and 94.1% sensitivity. In the validation dataset, the same cut-off point correctly classified 98.8% of the cases with 98.4% specificity and 100% sensitivity. CONCLUSIONS:The CBI was shown to be highly sensitive and specific to separate healthy from keratoconic eyes. The presence of an external validation dataset confirms this finding and suggests the possible use of the CBI in everyday clinical practice to aid in the diagnosis of keratoconus.[J Refract Surg. 2016;32(12):803-810.]
The TBI generated by the RF/LOOCV provided greater accuracy for detecting ectasia than other techniques. The TBI was sensitive for detecting subclinical (fruste) ectasia among eyes with normal topography in very asymmetric patients. The TBI may also confirm unilateral ectasia, potentially characterizing the inherent ectasia susceptibility of the cornea, which should be the subject of future studies. [J Refract Surg. 2017;33(7):434-443.].
Purpose: This study aims to introduce and clinically validate a new algorithm that can determine the biomechanical properties of the human cornea in vivo . Methods: A parametric study was conducted involving representative finite element models of human ocular globes with wide ranges of geometries and material biomechanical behavior. The models were subjected to different levels of intraocular pressure (IOP) and the action of external air puff produced by a non-contact tonometer. Predictions of dynamic corneal response under air pressure were analyzed to develop an algorithm that can predict the cornea's material behavior. The algorithm was assessed using clinical data obtained from 480 healthy participants where its predictions of material behavior were tested against variations in central corneal thickness (CCT), IOP and age, and compared against those obtained in earlier studies on ex-vivo human ocular tissue. Results: The algorithm produced a material stiffness parameter (Stress-Strain Index or SSI) that showed no significant correlation with both CCT ( p > 0.05) and IOP ( p > 0.05), but was significantly correlated with age ( p < 0.01). The stiffness estimates and their variation with age were also significantly correlated ( p < 0.01) with stiffness estimates obtained earlier in studies on ex-vivo human tissue. Conclusions: The study introduced and validated a new method for estimating the in vivo biomechanical behavior of healthy corneal tissue. The method can aid optimization of procedures that interfere mechanically with the cornea such as refractive surgeries and introduction of corneal implants.
n 1619, Scheiner provided the first precise description of the corneal shape using glass balls of known curvatures.1 From that first description, many other diagnostic tools have been developed to describe corneal shape, from keratometry to corneal topography (front surface curvature maps), 2 then into three-dimensional corneal tomography systems.3 More recently, it has been shown that corneal biomechanical behavior plays an important role in maintaining corneal shape, which is necessary for light refraction and clear vision, 4 and should therefore be considered in understanding the development of ectatic diseases 5,6 and the results of surgery. 4,7 Until recently, the evaluation of corneal biomechanical properties had been restricted to ex vivo laboratory studies 5,8 and mathematical corneal models. METHODS: Seven hundred five healthy patients were included in this multicenter retrospective study. The biomechanical response data were analyzed to obtain normative values with their dependence on corrected and clinically validated intraocular pressure estimates developed using the finite element method (bIOP), central corneal thickness (CCT), and age, and to evaluate the influence of bIOP, CCT, and age. RESULTS:The results showed that all DCRs were correlated with bIOP except deflection amplitude (DefA) ratio, highest concavity (HC) radius, and inverse concave radius. The analysis of the relationship of DCRs with CCT indicated that HC radius, inverse concave radius, deformation amplitude (DA) ratio, and DefA ratio were correlated with CCT (rho values of 0.343, -0.407, -0.444, and -0.406, respectively). The age group subanalysis revealed that primarily whole eye movement followed by DA ratio and inverse concave radius were the parameters that were most influenced by age. Finally, custom software was created to compare normative values to imported examinations.CONCLUSIONS: HC radius, inverse concave radius, DA ratio, and DefA ratio were shown to be suitable parameters to evaluate in vivo corneal biomechanics due to their independence from IOP and their correlation with pachymetry and age. The creation of normative values allows the interpretation of an abnormal examination without the need to match every case with another normal patient matched for CCT and IOP.[J Refract Surg. 2016;32(8):550-561.]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.