GPUs (Graphics Processing Units) have become one of the main co-processors that contributed to desktops towards high performance computing. Together with multicore CPUs and other co-processors, a powerful heterogeneous execution platform is built on a desktop for data intensive calculations. In our perspective, we see the modern desktop as a heterogeneous cluster that can deal with several applications' tasks at the same time. To improve application performance and explore such heterogeneity, a distribution of workload over the asymmetric PUs (Processing Units) plays an important role for the system. However, this problem faces challenges since the cost of a task at a PU is non-deterministic and can be influenced by several parameters not known a priori, like the problem size domain. We present a context-aware architecture that maximizes application performance on such platforms. This approach combines a model for a first scheduling based on an offline performance benchmark with a runtime model that keeps track of tasks' real performance. We carried a demonstration using a CPU-GPU platform for computing iterative SLEs (Systems of Linear Equations) solvers using the number of unknowns as the main parameter for assignment decision. We achieved a gain of 38.3% in comparison to the static assignment of all tasks to the GPU (which is done by current programming models, such as OpenCL and CUDA for Nvidia).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.