This paper presents the Third PASCAL Recognising Textual Entailment Challenge (RTE-3), providing an overview of the dataset creating methodology and the submitted systems. In creating this year's dataset, a number of longer texts were introduced to make the challenge more oriented to realistic scenarios. Additionally, a pool of resources was offered so that the participants could share common tools. A pilot task was also set up, aimed at differentiating unknown entailments from identified contradictions and providing justifications for overall system decisions. 26 participants submitted 44 runs, using different approaches and generally presenting new entailment models and achieving higher scores than in the previous challenges.
The goal of identifying textual entailment – whether one piece of text can be plausibly inferred from another – has emerged in recent years as a generic core problem in natural language understanding. Work in this area has been largely driven by the PASCAL Recognizing Textual Entailment (RTE) challenges, which are a series of annual competitive meetings. The current work exhibits strong ties to some earlier lines of research, particularly automatic acquisition of paraphrases and lexical semantic relationships and unsupervised inference in applications such as question answering, information extraction and summarization. It has also opened the way to newer lines of research on more involved inference methods, on knowledge representations needed to support this natural language understanding challenge and on the use of learning methods in this context. RTE has fostered an active and growing community of researchers focused on the problem of applied entailment. This special issue of the JNLE provides an opportunity to showcase some of the most important work in this emerging area.
This paper explores the role of domain information in word sense disambiguation. The underlying hypothesis is that domain labels, such as Medicine, Architecture and Sport, provide a useful way to establish semantic relations among word senses, which can be profitably used during the disambiguation process. Results obtained at the Senseval-2 initiative confirm that for a significant subset of words domain information can be used to disambiguate with a very high level of precision.
This paper describes the outcomes of the TimeLine task (Cross-Document Event Ordering), that was organised within the Time and Space track of SemEval-2015. Given a set of documents and a set of target entities, the task consisted of building a timeline for each entity, by detecting, anchoring in time and ordering the events involving that entity. The TimeLine task goes a step further than previous evaluation challenges by requiring participant systems to perform both event coreference and temporal relation extraction across documents. Four teams submitted the output of their systems to the four proposed subtracks for a total of 13 runs, the best of which obtained an F 1 -score of 7.85 in the main track (timeline creation from raw text).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.