Maturation of the visual cortex is influenced by visual experience during an early postnatal period. The factors that regulate such a critical period remain unclear. We examined the maturation and plasticity of the visual cortex in transgenic mice in which the postnatal rise of brain-derived neurotrophic factor (BDNF) was accelerated. In these mice, the maturation of GABAergic innervation and inhibition was accelerated. Furthermore, the age-dependent decline of cortical long-term potentiation induced by white matter stimulation, a form of synaptic plasticity sensitive to cortical inhibition, occurred earlier. Finally, transgenic mice showed a precocious development of visual acuity and an earlier termination of the critical period for ocular dominance plasticity. We propose that BDNF promotes the maturation of cortical inhibition during early postnatal life, thereby regulating the critical period for visual cortical plasticity.
We studied the role of sensory experience in the maturation of GABAergic circuits in the rat visual cortex. Between the time at which the eyes first open and the end of the critical period for experience-dependent plasticity, the total GABAergic input converging into layer II/III pyramidal cells increases threefold. We propose that this increase reflects changes in the number of quanta released by presynaptic axons. Here, we show that the developmental increase in GABAergic input is prevented in animals deprived of light since birth but not in animals deprived of light after a period of normal experience. Thus, sensory experience appears to play a permissive role in the maturation of intracortical GABAergic circuits.
Visual deprivation such as dark rearing (DR) prolongs the critical period for ocular dominance plasticity and retards the maturation of ␥-aminobutyric acid (GABA)ergic inhibition in visual cortex. The molecular signals that mediate the effects of DR on the development of visual cortex are not well defined. To test the role of brain-derived neurotrophic factor (BDNF), we examined the effects of DR in transgenic mice in which BDNF expression in visual cortex was uncoupled from visual experience and remained elevated during DR. In dark-reared transgenic mice, visual acuity, receptive field size of visual cortical neurons, critical period for ocular dominance plasticity, and intracortical inhibition were indistinguishable from those observed in light-reared mice. Therefore, BDNF overexpression is sufficient for the development of aspects of visual cortex in the absence of visual experience. These results suggest that reduced BDNF expression contributes to retarded maturation of GABAergic inhibition and delayed development of visual cortex during visual deprivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.