This paper reviews and analyzes studies that are focused on Internet gambling with the use of behavioural tracking and big data to identify gambling behaviour. The behaviour of gamblers has been extensively studied and much has been published on the subject. The vast majority of research has relied on self-reported gambling behaviour or case study research. With the advent of the Internet, however, it has become possible for researchers to remotely study the real behaviour of gamblers. The goal has been to empirically describe playing behaviour in several conditions and contexts. Existing research, conducted since the 2000s, focuses on several forms of gambling such as sports betting, casino, poker, and lottery, but there is still only a concise body of research on gambling behaviour with the use of Internet gambling tracking data. Most studies are based on the same databases, meaning that a few companies and websites were the basis for most of the research produced so far. It is important to explore new sources of information, methodologies, and approaches to enrich discussion and contribute to a better understanding of this field. The empirical analysis of gambling behaviour with the use of tracking data was found to greatly contribute to the understanding of player behaviour, despite existing limitations and problems. Considering that Internet gambling behavioural tracking is still a fairly recent phenomenon, much can still be done to further develop this field of research.Cet article examine et analyse les études axées sur le jeu en ligne qui recourent au suivi comportemental et aux mégadonnées pour cerner le comportement lié au jeu. Or, on a souvent étudié le comportement des joueurs et on a beaucoup publié sur le sujet, mais jusqu’à présent, la majeure partie de la recherche repose sur le comportement autodéclaré ou la recherche fondée sur les études de cas. Avec l’avènement d’Internet, il est dorénavant possible pour les chercheurs d’étudier à distance le comportement réel des joueurs. L’objectif a donc consisté à décrire de manière empirique le comportement lié au jeu dans plusieurs conditions et contextes. La recherche existante, menée depuis les années 2000, se concentre sur plusieurs formes de jeux de hasard tels que les paris sportifs, le casino, le poker et la loterie. Mais à ce jour, il n’existe qu’un corpus de recherches très concis sur le comportement lié au jeu qui utilise des données de suivi sur le jeu par Internet. La plupart des études sont fondées sur les mêmes bases de données, car seulement quelques entreprises et sites Web ont servi de base à la plupart des recherches produites jusqu’à maintenant. Il est donc important d’explorer de nouvelles sources d’information, méthodologies et approches pour pouvoir enrichir les discussions et améliorer la compréhension de ce domaine. L’analyse empirique du comportement lié au jeu à l’aide de données de suivi a ainsi largement contribué à la compréhension du comportement du joueur en dépit des limites et problèmes existants. Si l’on tient compte du fait que le suivi comportemental du jeu sur Internet est un phénomène encore assez récent, il reste beaucoup à faire pour exploiter davantage ce domaine de recherche.
This paper reviews and analyzes studies that are focused on Internet gambling with the use of behavioural tracking and big data to identify gambling behaviour. The behaviour of gamblers has been extensively studied and much has been published on the subject. The vast majority of research has relied on self-reported gambling behaviour or case study research. With the advent of the Internet, however, it has become possible for researchers to remotely study the real behaviour of gamblers. The goal has been to empirically describe playing behaviour in several conditions and contexts. Existing research, conducted since the 2000s, focuses on several forms of gambling such as sports betting, casino, poker, and lottery, but there is still only a concise body of research on gambling behaviour with the use of Internet gambling tracking data. Most studies are based on the same databases, meaning that a few companies and websites were the basis for most of the research produced so far. It is important to explore new sources of information, methodologies, and approaches to enrich discussion and contribute to a better understanding of this field. The empirical analysis of gambling behaviour with the use of tracking data was found to greatly contribute to the understanding of player behaviour, despite existing limitations and problems. Considering that Internet gambling behavioural tracking is still a fairly recent phenomenon, much can still be done to further develop this field of research.Cet article examine et analyse les études axées sur le jeu en ligne qui recourent au suivi comportemental et aux mégadonnées pour cerner le comportement lié au jeu. Or, on a souvent étudié le comportement des joueurs et on a beaucoup publié sur le sujet, mais jusqu’à présent, la majeure partie de la recherche repose sur le comportement autodéclaré ou la recherche fondée sur les études de cas. Avec l’avènement d’Internet, il est dorénavant possible pour les chercheurs d’étudier à distance le comportement réel des joueurs. L’objectif a donc consisté à décrire de manière empirique le comportement lié au jeu dans plusieurs conditions et contextes. La recherche existante, menée depuis les années 2000, se concentre sur plusieurs formes de jeux de hasard tels que les paris sportifs, le casino, le poker et la loterie. Mais à ce jour, il n’existe qu’un corpus de recherches très concis sur le comportement lié au jeu qui utilise des données de suivi sur le jeu par Internet. La plupart des études sont fondées sur les mêmes bases de données, car seulement quelques entreprises et sites Web ont servi de base à la plupart des recherches produites jusqu’à maintenant. Il est donc important d’explorer de nouvelles sources d’information, méthodologies et approches pour pouvoir enrichir les discussions et améliorer la compréhension de ce domaine. L’analyse empirique du comportement lié au jeu à l’aide de données de suivi a ainsi largement contribué à la compréhension du comportement du joueur en dépit des limites et problèmes existants. Si l’on tient compte du fait que le suivi comportemental du jeu sur Internet est un phénomène encore assez récent, il reste beaucoup à faire pour exploiter davantage ce domaine de recherche.
The present study is the first to examine account-based tracking data of Portuguese online lottery players comprising the gambling activity of all active players over a one-year period (N = 154,585). The main research goal was the identification of groups or segments of players by their engagement levels (high, neutral, low) and to assess preferences in product category with the use of CHAID (Chi-Square Automatic Interaction Detection) segmentation models, based on expenditure and sociodemographic variables. Findings showed that (1) age was found to be the most influential differentiating variable in player segmentation and had a positive correlation with expenditures and wagers, (2) gender was the second most influential variable (males represented 78.7% of players), (3) education the third most influential variable and had a negative correlation with expenditure, and (4) region was the least relevant variable. The models generated several players segments that engaged in different games. Older males (54–64 years; ≥ 65 years) were the most engaged overall. Younger males (18–34 years) were the least engaged but showed preferences for lotto as did females (35–49 years). Lower educated males and older males (49 years+) with a high school education were the most engaged in instant lottery games. These findings show that Portuguese lottery players can be grouped into several segments with distinct demographic characteristics and corresponding engagement levels. These findings help support more effective marketing segmentation and will help in the targeting of responsible gambling approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.