QSPR models for logP and vapor pressures of organic compounds based on neural net interpretation of descriptors derived from quantum mechanical (semiempirical MO; AM1) calculations are presented. The models are cross-validated by dividing the compound set into several equal portions and training several individual multilayer feedforward neural nets (trained by the back-propagation of errors algorithm), each with a different portion as test set. The results of these nets are combined to give a mean predicted property value and a standard deviation. The performance of two models, for logP and the vapor pressure at room temperature, is analyzed, and the reliability of the predictions is tested.
We have investigated techniques for distinguishing between drugs and nondrugs using a set of molecular descriptors derived from semiempirical molecular orbital (AM1) calculations. The "drug" data set of 2105 compounds was derived from the World Drug Index (WDI) using a procedure designed to select real drugs. The "nondrug" data set was the Maybridge database. We have first investigated the dimensionality of physical properties space based on a set of 26 descriptors that we have used successfully to build absorption, distribution, metabolism, and excretion-related quantitative structure-property relationship models. We discuss the general nature of the descriptors for physical property space and the ability of these descriptors to distinguish between drugs and nondrugs. The third most significant principal component of this set of descriptors serves as a useful numerical index of drug-likeness, but no others are able to distinguish between drugs and nondrugs. We have therefore extended our set of descriptors to a total of 66 and have used recursive partitioning to identify the descriptors that can distinguish between drugs and nondrugs. This procedure pointed to two of the descriptors that play an important role in the principal component found above and one more from the set of 40 extra descriptors. These three descriptors were then used to train a Kohonen artificial neural net for the entire Maybridge data set. Projecting the drug database onto the map obtained resulted in a clear distinction not only between drugs and nondrugs but also, for instance, between hormones and other drugs. Projection of 42 131 compounds from the WDI onto the Kohonen map also revealed pronounced clustering in the regions of the map assigned as druglike.
We present QSPR models for normal boiling points employing a neural network approach and descriptors calculated using semiempirical MO theory (AM1 and PM3). These models are based on a data set of 6000 compounds with widely varying functionality and should therefore be applicable to a diverse range of systems. We include cross-validation by simultaneously training 10 different networks, each with different training and test sets. The predicted boiling point is given by the mean of the 10 results, and the individual error of each compound is related to the standard deviation of these predictions. For our best model we find that the standard deviation of the training error is 16.5 K for 6000 compounds and the correlation coefficient (R2) between our prediction and experiment is 0.96. We also examine the effect of different conformations and tautomerism on our calculated results. Large deviations between our predictions and experiment can generally be explained by experimental errors or problems with the semiempirical methods.
hERG blockade is one of the major toxicological problems in lead structure optimization. Reliable ligand-based in silico models for predicting hERG blockade therefore have considerable potential for saving time and money, as patch-clamp measurements are very expensive and no crystal structures of the hERG-encoded channel are available. Herein we present a predictive QSAR model for hERG blockade that differentiates between specific and nonspecific binding. Specific binders are identified by preliminary pharmacophore scanning. In addition to descriptor-based models for the compounds selected as hitting one of two different pharmacophores, we also use a model for nonspecific binding that reproduces blocking properties of molecules that do not fit either of the two pharmacophores. PLS and SVR models based on interpretable quantum mechanically derived descriptors on a literature dataset of 113 molecules reach overall R(2) values between 0.60 and 0.70 for independent validation sets and R(2) values between 0.39 and 0.76 after partitioning according to the pharmacophore search for the test sets. Our findings suggest that hERG blockade may occur through different types of binding, so that several different models may be necessary to assess hERG toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.