Abstract. We present a novel self-organizing network which is generated by a growth process. The application range of the model is the same as for Kohonen's feature map: generation of topology-preserving and dimensionality-reducing mappings, e.g., for the purpose of data visualization. The network structure is a rectangular grid which, however, increases its size during self-organization. By inserting complete rows or columns of units the grid may adapt its height/width ratio to the given pattern distribution. Both the neighborhood range used to co-adapt units in the vicinity of the winning unit and the adaptation strength are constant during the growth phase. This makes it possible to let the network grow until an application-specific performance criterion is fulfilled or until a desired network size is reached. A final approximation phase with decaying adaptation strength finetunes the network.
Abstract. We present a new algorithm for the construction of radial basis function (RBF) networks. The method uses accumulated error information to determine where to insert new units. The diameter of the localized units is chosen based on the mutual distances of the units. To have the distance information always available, it is held up-to-date by a Hebbian learning rule adapted from the "Neural Gas" algorithm. The new method has several advantages over existing methods and is able to generate small, well-generalizing networks with comparably few sweeps through the training data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.