In digital hydraulic systems, switching valves have opening and closing times in the range of a few milliseconds. Due to this fast switching, high bandwidth pressure pulsation is excited, which is the stimulus for airborne noise up to some kilohertz. Since the human ear is very sensitive to audible noise in this frequency range, an analysis of the influence of the valve’s opening curve on the pressure surge in the pipe system is intended. The study is based on simulations employing dynamic pipe models for linear wave propagation and laminar fluid flow. In particular, a simple pipe system with a valve at one end and a pressure boundary at the other end of the pipe is investigated. It is shown, how the valve opening characteristics of spool and seat type switching valves influences the pipe responses. Also the role of parasitic inductances due to the valve block bores is discussed and it is shown how the switching characteristics influences the dynamical effects on the pressure pulsations in the pipe system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.