This paper addresses the problem of sensitivity analysis for finite-horizon performance measures of general Markov chains. We derive closed-form expressions and associated unbiased gradient estimators for the derivatives of finite products of Markov kernels by measure-valued differentiation (MVD). In the MVD setting, the derivatives of Markov kernels, called D-derivatives, are defined with respect to a class of performance functions D such that, for any performance measure g ∈ D, the derivative of the integral of g with respect to the one-step transition probability of the Markov chain exists. The MVD approach (i) yields results that can be applied to performance functions out of a predefined class, (ii) allows for a product rule of differentiation, that is, analyzing the derivative of the transition kernel immediately yields finite-horizon results, (iii) provides an operator language approach to the differentiation of Markov chains and (iv) clearly identifies the trade-off between the generality of the performance classes that can be analyzed and the generality of the classes of measures (Markov kernels). The D-derivative of a measure can be interpreted in terms of various (unbiased) gradient estimators and the product rule for D-differentiation yields a product-rule for various gradient estimators.
We study Taylor series expansions of stationary characteristics of general-state-space Markov chains. The elements of the Taylor series are explicitly calculated and a lower bound for the radius of convergence of the Taylor series is established. The analysis provided in this paper applies to the case where the stationary characteristic is given through an unbounded sample performance function such as the second moment of the stationary waiting time in a queueing system.
In this paper, we propose a new unbiased stochastic derivative estimator in a framework that can handle discontinuous sample performances with structural parameters. This work extends the three most popular unbiased stochastic derivative estimators: (1) infinitesimal perturbation analysis (IPA), (2) the likelihood ratio (LR) method, and (3) the weak derivative method, to a setting where they did not previously apply. Examples in probability constraints, control charts, and financial derivatives demonstrate the broad applicability of the proposed framework. The new estimator preserves the singlerun efficiency of the classic IPA-LR estimators in applications, which is substantiated by numerical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.