Abstract-Intercellular communication through gap junctions coordinates vascular tone by the conduction of vasomotorresponses along the vessel wall. Gap junctions in arterioles are composed of different connexins (Cxs) (Cx40, Cx37, Cx45, Cx43), but it is unknown whether Cxs are interchangeable. We used mice with a targeted replacement of Cx40 by Cx45 (Cx40KI45) to explore whether Cx45 can functionally replace Cx40 in arterioles. Arterioles were locally stimulated using acetylcholine, bradykinin, adenosine, and K ϩ in the cremaster of Cx40KI45, Cx40-deficient (Cx40ko), and wild-type mice, and diameter changes were assessed by intravital microscopy. Additionally, arterial pressure was measured by telemetry and Cx expression verified by immunofluorescence. Acetylcholine initiated a local dilation of a similar amplitude in all genotypes (Ϸ50%), which was rapidly conducted to upstream sites (1200 m distance) without attenuation in wild type. In marked contrast, the remote dilation was significantly reduced in Cx40ko (25Ϯ3%) and Cx40KI45 (24Ϯ2%). Likewise, dilations initiated by bradykinin application were conducted without attenuation up to 1200 m in wild type but not in Cx40ko and Cx40KI45. Adenosine-induced dilations and K ϩ -induced constrictions were conducted similarly with decaying amplitude in all genotypes. Arterial pressure was strongly elevated in Cx40ko (161Ϯ1 versus 116Ϯ2 mm Hg) but only moderately in Cx40KI45 (133Ϯ8 mm Hg). This demonstrates that Cx40 function is critical for the conduction of acetylcholine and bradykinin dilations and cannot be substituted by Cx45. Therefore, unique properties of Cx40 are required for endothelial signal conduction, whereas nonspecific restoration of communication maintains additional functions related to blood pressure control.
Vasomotor reactions upon focal stimulation of arterioles have been shown to be conducted along the vascular wall. Such a conduction, which is assumed to reflect the spread of electrical signals, may contribute to coordination of responses within a vascular segment. We aimed to identify which endothelial autacoid(s) act as mediators of the local and conducted dilator responses, respectively. To this end, arterioles in the hamster cremaster microcirculation were locally stimulated with endothelium-dependent [acetylcholine (ACh)] or endothelium-independent dilators [sodium nitroprusside (SNP)], and the resulting changes in diameter were measured using a videomicroscopy technique at the site of application and up to 1.4 mm upstream at distant sites. Experiments were also performed after blockade of nitric oxide (NO) synthase, cyclooxygenase, P-450 monooxygenase, or K(+) channels. Dilations upon ACh (71 +/- 3%) were conducted rapidly (<1 s) to upstream sites (at 1.4 mm: 37 +/- 5%). Although the NO donor SNP induced a similar local dilation (71 +/- 7%), this response was not conducted. Maximal amplitudes of ACh-induced dilations were not attenuated after inhibition of NO synthase and cyclooxygenase at the local and remote sites. However, additional treatment with a P-450 monooxygenase blocker (sulfaphenazole) strongly attenuated the local response (from 62 +/- 9 to 17 +/- 5%) and abrogated dilations at distant sites (at 0.67 mm: from 23 +/- 4% to 4 +/- 3%). Likewise, 17-octadecynoic acid strongly attenuated local and remote responses. Blockers of Ca(2+)-dependent K(+) channels (charybdotoxin or iberiotoxin) attenuated dilations at the local and remote sites after focal application at the ACh stimulation site. In marked contrast, treatment of the upstream site with these blockers was without any effect. We conclude that upon local stimulation with ACh, a cytochrome P-450 monooxygenase product is generated that induces local dilation via the activation of Ca(2+)-dependent K(+) channels and initiates conduction of the dilation. In contrast to the local site, neither activation of these K(+) channels nor the synthesis of NO or prostaglandins is necessary to dilate the arterioles at remote, distant sites. This suggests that endothelium-derived hyperpolarizing factor serves as an important mediator to initiate conducted dilations and, by doing so, may act as a key player in the coordination of arteriolar behavior in the microcirculatory network.
Cellular interaction in vessels is achieved by multiple communication pathways, including gap junctions (GJs). They provide intercellular channels, allowing direct interaction of endothelial and smooth muscle cells and the coordination of cellular behaviour along the vessel. The latter is a prerequisite for large flow increases because an adaptation of resistance along the vessel length is required. Longitudinal communication is studied by confined local stimulation of arterioles and the observation of responses at distant locations. Certain vascular stimuli induce local and concomitant remote responses of a similar type, verifying rapid longitudinal conduction of vasomotor signals, most likely changes in membrane potential. This is achieved for dilatory responses via the endothelium, possibly by an endothelium-derived hyperpolarising factor (EDHF) that induces local hyperpolarisation, which is then transferred to remote sites through GJs. In vessels, GJs are composed of different connexins (Cx), but Cx40 is of special importance because its lack impairs longitudinal conduction of vasodilations. Interestingly, Cx40-deficient mice are hypertensive, suggesting that Cx40-dependent coupling is necessary to regulate vascular behaviour and peripheral resistance. While the role of other connexins is less well established, an abundance of data has proven the necessity of GJ communication to coordinate vascular behaviour during blood flow regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.