We report on the refinement of anionic and cationic nanoparticles of nonstoichometric polyelectrolyte complexes (PEC) by consecutive centrifugation, which was studied by dynamic light scattering (DLS), atomic force microscopy (AFM), colloid titration and infrared spectroscopy (IR). PEC dispersions were prepared by mixing poly(diallyldimethylammonium chloride) (PDADMAC) and sodium poly(maleic acid-alt-alpha-methylstyrene) (PMA-MS) at the monomolar mixing ratio of n-/n+ = 1.50 (anionic PEC) and 0.66 (cationic PEC), respectively, and the polymer concentration of c(POL) = 0.002 M. The particle size (Rh), titrable charge amount, and IR spectra were determined for both dispersions in the original state, after the first centrifugation and after the second centrifugation. Freshly prepared PEC dispersions contained two different particle sizes: around 10-25 nm (small particles) and around 100 nm (large particles). Consecutive centrifugation of freshly prepared PEC dispersions resulted in the separation of highly charged excess polyelectrolyte (PEL) and small PEC particles from a low charged coacervate phase of the desired larger PEC particles. After the second centrifugation, the coacervate phase of both dispersions PEC-1.50 and PEC-0.66 consisted of monomodal particles sizing around 100 nm. These results were supported by AFM measurements on the respective dispersions deposited on glass plates. PEC-1.50 particles tended to adopt slightly smaller sizes ( approximately 90 nm) in comparison to PEC-0.66 ones (approximately 110 nm). No significant influence of the PDADMAC molecular weight on the particle size was found. IR spectroscopy showed changes in the environment of the carboxylate groups of PMA-MS by consecutive centrifugation. The centrifuged PEC-1.50 dispersions showed remarkable long-term stability over more than a year. The high macroscopic stability of the studied PEC dispersions is presumably due to repulsive electrostatic interparticle interactions and attractive hydrophobic intraparticle interaction. The introduced monomodal PEC particles might be projected as latex analogues or as nanocarriers for drugs and proteins.
The selective interaction between polyelectrolyte multilayers (PEM) consecutively adsorbed from poly(ethyleneimine) (PEI) and poly(acrylic acid) (PAC) and a binary mixture containing concanavalin A (COA) and lysozyme (LYZ) based on electrostatic interaction is reported. The composition and structure of the PEM and the uptake of proteins were analyzed by in situ attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy, and the morphology and thickness were characterized by atomic force microscopy (AFM) and ellipsometry. The PEM dissociation degree and charge state and the protein adsorption were shown to be highly dependent on the outermost layer type and the pH in solution. High protein uptake was obtained under electrostatically attractive conditions. This was used to bind selectively one protein from a binary mixture of LYZ/COA. In detail it could be demonstrated that six-layered PEM-6 at pH = 7.3 showed a preferential sorption of positively charged LYZ, while at PEM-5 and pH = 7.3 negatively charged COA could be selectively bound. No protein sorption from the binary mixture was observed at pH = 4.0 for both PEM, when COA, LYZ, and the outermost PEI layer of PEM-5 were positively charged or the outermost PAC layer of PEM-6 was neutral. Furthermore, from factor analysis of the spectral data the higher selectivity was found for PEM-5 compared to PEM-6. Increasing the ionic strength revealed a drastic decrease in the selectivity of both PEM. Evidence was found that the proteins were predominantly bound at the surface and to a minor extent in the bulk phase of PEM. These results suggest possible working regimes and application fields of PEI/PAC multilayer assemblies related to the preparative separation of binary and multicomponent protein mixtures (biofluids, food) as well as to the design of selective protein-resistant surfaces.
Deposition from dopamine (DA) solutions at germanium (Ge) model substrates was monitored under stationary conditions using surface sensitive in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. ATR-FTIR spectra of the interfacial organic layer formed upon contact of TRIS buffered aqueous DA solutions to a Ge internal reflection element (IRE) showed conveniently strong diagnostic IR absorption bands, which were increasing with deposition time up to at least 6 h. Comparison of IR spectra of unreacted pristine DA, surface reacted, and bulk reacted material confirmed chemical reactions of DA to a polymerizate according to the literature. The found IR bands could be assigned to aromatic as well as C-O single bond moieties. The kinetic courses of the diagnostic band integrals showed an initial increase and saturation of the deposition after around 300 min, which could be empirically represented by an exponential damping function revealing a rather small kinetic constant. Highest deposition levels were found at pH = 8.5 (TRIS buffer or NaOH) in contrast to pH = 6.2, where no deposition occurred. Minor deposition was found in the presence of salt or at ZnSe instead of Ge due to the absence of reactive hydroxyl groups. The concentration dependence of DA deposition showed an initial increase and a saturation beginning at around 0.4 mg/mL (0.0022 M), where around 50 nm thick films featuring granular surface morphologies are formed. The adsorbed species are suggested to be smaller bulk reacted DA polymerizate particles with reactive end groups. Rinsing the formed films by pure TRIS buffer resulted in a time dependent release of deposited organic material by ≈23%, which could be represented by an exponential decay function. A saturation of the release after around 100 min and a larger kinetic constant compared to deposition could be determined. The released material is suggested to be larger aggregated bulk reacted DA polymerizate particles loosely bound to the surface by weak interaction forces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.