The application of nonlinear model predictive control (NMPC) for the temperature control of an industrial batch polymerization reactor is illustrated. A realtime formulation of the NMPC that takes computational delay into account and uses an efficient multiple shooting algorithm for on-line optimization problem is described. The control relevant model used in the NMPC is derived from the complex first-principles model and is fitted to the experimental data using maximum likelihood estimation. A parameter adaptive extended Kalman filter (PAEKF) is used for state estimation and on-line model adaptation. The performance of the NMPC implementation is assessed via simulation and experimental studies.
Batch processes play a significant role in the production of most modern highvalue added products. The paper illustrates the benefits of nonlinear model predictive control (NMPC) for the setpoint tracking control of an industrial batch polymerization reactor. Real-time feasibility of the on-line optimization problem from the NMPC is achieved using an efficient multiple shooting algorithm. A real-time formulation of the NMPC that takes computational delay into account is described. The control relevant model used in the NMPC is derived from the complex first principles model and is fitted to the experimental data using maximum likelihood estimation. A parameter adaptive extended Kalman filter (PAEKF) is used for state estimation and on-line model adaptation. The performance of the NMPC implementation is assessed via simulation and experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.