Several major earthquakes (Mw>7) have occurred in this gap since 1850 (Fig. 1); the largest until now was the Mw 7.7 Tocopilla earthquake in 2007, which broke the southern rim of this segment beneath and north of Mejillones Peninsula along a total length of 150 km. Only the downdip end of the locked zone slipped in this event, and the total slip in the rupture area was less than 2.6 m 6,7 leaving most of the past slip deficit of c. 8-9 m accumulated since 1877 3 approaches. First, we performed waveform modelling of local strong motion seismograms and teleseismic body waves to constrain the kinematic development of the rupture towards the final displacement in a joint inversion with continuous GPS data of static displacements (Fig. 1, 2a). Second, we use the backprojection technique applied to stations in North America to map the radiation of high frequency seismic waves (HFSR; 1-4 Hz) 9,10 . The latter technique is not sensitive to absolute slip amplitudes, but rather to changes in slip and rupture velocity.During the first 35-40s the rupture propagated downdip with increasing velocity, nearly reaching the coastline (Fig. 2a,b). Surprisingly, towards the end of the rupture, the area near the epicenter was reactivated. In spite of the relatively complicated kinematic history of the rupture the cumulative slip shows a simple 'bull's eye' pattern with a peak coseismic slip of (Fig. 3a). The Iquique main shock nucleated at the 4 northwestern border of a locked patch and ruptured towards its center (Fig. 2a, 3a). The downdip end of the main shock as well as for the large Mw 7.6 aftershock rupture mapped both by the HFSR and co-seismic slip agrees quite accurately with the downdip end interseismic coupling (Fig. 2a,c 3a). The accelerated downdip rupture propagation for both earthquakes closely followed the gradient towards higher locking. Therefore, the Iquique event and its largest aftershock appear to have broken the central, only partly locked segment of the Northern Chile Southern Peru seismic gap releasing part of the slip deficit accumulated here since 1877 (cf. Fig. 1).The seismicity before the Iquique earthquake also concentrates in this zone of intermediate locking at the fringe of the highly locked -high slip patch (Fig. 3a). Starting in July 2013, three foreshock clusters with increasingly larger peak magnitudes and cumulative seismic moment occurred here (Fig. 2c, 3a,c). The mainshock rupture started at the northern end of the foreshock zone, inside the region of intermediate locking (Fig. 2c, 3a). Interestingly, the second foreshock cluster (January 2014) is associated with a weak transient deformation, whereas the third cluster (March 2014) shows a very distinct transient signal. GPS displacement vectors calculated over the times spanning these foreshock clusters point towards the cluster epicentres (Extended Data Figure 4). Deformation for both transients is entirely explained by the cumulative coseismic displacement of the respective foreshock clusters (Fig. 3d inset, Extended Data Figure 4). The ar...
The Central Andes are the Earth's highest mountain belt formed by ocean-continent collision. Most of this uplift is thought to have occurred in the past 20 Myr, owing mainly to thickening of the continental crust, dominated by tectonic shortening. Here we use P-to-S (compressional-to-shear) converted teleseismic waves observed on several temporary networks in the Central Andes to image the deep structure associated with these tectonic processes. We find that the Moho (the Mohorovicić discontinuity--generally thought to separate crust from mantle) ranges from a depth of 75 km under the Altiplano plateau to 50 km beneath the 4-km-high Puna plateau. This relatively thin crust below such a high-elevation region indicates that thinning of the lithospheric mantle may have contributed to the uplift of the Puna plateau. We have also imaged the subducted crust of the Nazca oceanic plate down to 120 km depth, where it becomes invisible to converted teleseismic waves, probably owing to completion of the gabbro-eclogite transformation; this is direct evidence for the presence of kinetically delayed metamorphic reactions in subducting plates. Most of the intermediate-depth seismicity in the subducting plate stops at 120 km depth as well, suggesting a relation with this transformation. We see an intracrustal low-velocity zone, 10-20 km thick, below the entire Altiplano and Puna plateaux, which we interpret as a zone of continuing metamorphism and partial melting that decouples upper-crustal imbrication from lower-crustal thickening.
Based on a 2 year seismic record from a local network, we characterize the deformation of the seismogenic crust of the Pamir in the northwestern part of the India-Asia collision zone. We located more than 6000 upper crustal earthquakes in a regional 3-D velocity model. For 132 of these events, we determined source mechanisms, mostly through full waveform moment tensor inversion of locally and regionally recorded seismograms. We also produced a new and comprehensive neotectonic map of the Pamir, which we relate to the seismic deformation. Along Pamir's northern margin, where GPS measurements show significant shortening, we find thrust and dextral strike-slip faulting along west to northwest trending planes, indicating slip partitioning between northward thrusting and westward extrusion. An active, north-northeast trending, sinistral transtensional fault system dissects the Pamir's interior, connecting the lakes Karakul and Sarez, and extends by distributed faulting into the Hindu Kush of Afghanistan. East of this lineament, the Pamir moves northward en bloc, showing little seismicity and internal deformation. The western Pamir exhibits a higher amount of seismic deformation; sinistral strike-slip faulting on northeast trending or conjugate planes and normal faulting indicate east-west extension and north-south shortening. We explain this deformation pattern by the gravitational collapse of the western Pamir Plateau margin and the lateral extrusion of Pamir rocks into the Tajik-Afghan depression, where it causes thin-skinned shortening of basin sediments above an evaporitic décollement. Superposition of Pamir's bulk northward movement and collapse and westward extrusion of its western flank causes the gradual change of surface velocity orientations from north-northwest to due west observed by GPS geodesy. The distributed shear deformation of the western Pamir and the activation of the Sarez-Karakul fault system may ultimately be caused by the northeastward propagation of India's western transform margin into Asia, thereby linking deformation in the Pamir all the way to the Chaman fault in the south in Afghanistan.
[1] We present new seismicity images based on a two-year seismic deployment in the Pamir and SW Tien Shan. A total of 9532 earthquakes were detected, located, and rigorously assessed in a multistage automatic procedure utilizing state-of-the-art picking algorithms, waveform cross-correlation, and multi-event relocation. The obtained catalog provides new information on crustal seismicity and reveals the geometry and internal structure of the Pamir-Hindu Kush intermediate-depth seismic zone with improved detail and resolution. The relocated seismicity clearly defines at least two distinct planes: one beneath the Pamir and the other beneath the Hindu Kush, separated by a gap across which strike and dip directions change abruptly. The Pamir seismic zone forms a thin (approximately 10 km width), curviplanar arc that strikes east-west and dips south at its eastern end and then progressively turns by 90°to reach a north-south strike and a due eastward dip at its southwestern termination. Pamir deep seismicity outlines several streaks at depths between 70 and 240 km, with the deepest events occurring at its southwestern end. Intermediate-depth earthquakes are clearly separated from shallow crustal seismicity, which is confined to the uppermost 20-25 km. The Hindu Kush seismic zone extends from 40 to 250 km depth and generally strikes east-west, yet bends northeast, toward the Pamir, at its eastern end. It may be divided vertically into upper and lower parts separated by a gap at approximately 150 km depth. In the upper part, events form a plane that is 15-25 km thick in cross section and dips sub-vertically north to northwest. Seismic activity is more virile in the lower part, where several distinct clusters form a complex pattern of sub-parallel planes. The observed geometry could be reconciled either with a model of two-sided subduction of Eurasian and previously underthrusted Indian continental lithosphere or by a purely Eurasian origin of both Pamir and Hindu Kush seismic zones, which necessitates a contortion and oversteepening of the latter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.