Carbon Fiber Reinforced Polymer (CFRP) is an advanced composite material with the advantages of high strength, lightweight, no corrosion and excellent fatigue resistance. Therefore, unidirectional CFRP has great potential for cables and to replace steel cables in cable structures. However, CFRP is a typical orthotropic material and its strength and modulus perpendicular to the fiber direction are much lower than those in the fiber direction, which brings a challenge for anchoring CFRP cables. This paper presents an overview of application of CFRP cables in cable structures, including historical review, state of the art and prospects for the future. After introducing properties of carbon fibers, mechanical characteristics and structural forms of CFRP cables, existing CFRP cable structures in the world (all of them are cable bridges) are reviewed. Especially, their CFRP cable anchorages are presented in detail. New applications for CFRP cables, i.e., cable roofs and cable facades, are also presented, including the introduction of a prototype CFRP cable roof and the conceptual design of a novel structure-CFRP Continuous Band Winding System. In addition, other challenges that impede widespread application of CFRP cable structures are briefly introduced.
Der Fortschritt im Bauingenieurwesen ist eng mit dem Aufkommen neuer Materialien verknüpft. Werkstoffe wie Eisen und Stahl, der moderne Stahlbeton und der Spannbetonbau haben die Baukultur seit dem Beginn der Industrialisierung maßgeblich verändert. Seit den 1990‐er Jahren werden mit Kohlenstofffasern verstärkte Kunststoffe (CFK) für eine steigende Anzahl von Anwendungen im Bauwesen verwendet. Im Artikel finden sich neben einer Einleitung zu den Eigenschaften dieses Hochleistungswerkstoffs eine Zusammenstellung des Entwicklungsstands von Zugelementen aus CFK und den dazugehörigen Verankerungen. Zugelemente aus CFK haben großes Potenzial für leichte und weitgespannte Konstruktionen wie Seilbrücken und Dachkonstruktionen. Daher wird an der TU Berlin auf dem Gebiet der werkstoffgerechten Ausbildung von CFK‐Zugelementen geforscht. CFRP Tension Elements and Their Anchorages Progress in civil engineering is highly connected to the appearance of new materials. The materials iron and steel, reinforced concrete and prestressed concrete have been influencing the building culture since the beginning of industrialization. From the 1990s carbon fiber reinforced plastics (CFRP) experience an increasing use for structural application. This article gives an introduction to the properties of this high‐performance material and presents the state of the art of CFRP tension elements with their corresponding anchorages. CRFP tension elements have high potential for lightweight and wide spread constructions like cable bridges and suspended roofs. Therefore the appropriate design regarding the material of CFRP tension elements is investigated at the Technical University of Berlin.
Notching and bolting are commonly utilised in connecting fibre-reinforced polymer (FRP) laminates. These mechanical methods are usually superior to other connections, particularly when joining thick composite laminates. Stress distributions, damage modes and ultimate strengths in notched or bolted FRP laminate designs are of particular interest to the industrial community. To predict the ultimate strengths and the failure processes of notched or bolted composite laminates, nonlinear progressive damage analyses (PDA) based on the finite element method (FEM) at the meso-scale level are performed in this paper. A three-dimensional strength criterion in terms of strains, which can distinguish different damage modes, was developed and adopted in the analysis model to detect damage initiation in the laminates. Different material degradation methods and the influence of cohesive layers were discussed and compared with results of verification experiments. The results showed that the analysis model that used the succinct strength criterion proposed in this paper could properly predict the damage initiation and the ultimate strengths of notched or bolted FRP laminates. The errors between the numerical results and experimental data were small. The material degradation method with continuum damage mechanics (CDM)-based exponential damage factors using the damage index as the independent variable achieved greater accuracy and convergence than the method with CDM-based exponential damage factors using the square index as the independent variable or than the method with constant damage factors. Adding cohesive layers in the model had OPEN ACCESSPolymers 2014, 6 950 negligible influence on the final results, largely because the succinct analysis model proposed in this paper is sufficiently accurate in cases of small delamination.
Während im Automobil‐ und Flugzeugbau die beiden Hauptvorteile von kohlenstofffaserverstärkten Kunststoffen (CFK), hohe Festigkeit und geringes Gewicht, gut ausgenutzt werden können, kann man sich bei den Immobilien des Bauwesens zunächst nur die hohe Festigkeit von CFK zunutze machen. Auf der Suche nach Tragwerken, bei denen auch geringes Gewicht besonders hilfreich ist, stößt man schnell auf die weitgespannten, zugbeanspruchten und vorgespannten Flächentragwerke. In diesem Artikel soll das Potenzial von CFK‐Zugelementen für Ringseildächer aufgezeigt werden. Dazu wird ein typisches Ringseildach mit Stahlseilen mit einem solchen mit CFK‐Zugelementen verglichen und dabei auf den Einfluss der Eigenschaften verschiedener Kohlenstofffasern eingegangen. Es wird gezeigt, wie die Seilquerschnitte im Ringseildach mit dem Ersatz von Stahl durch CFK reduziert werden können, während die Verformung durch den Effekt der Vorspannung gleich bleibt. In einer Kostenabschätzung wird deutlich, dass die Leichtbaueigenschaften von CFK‐Zugelementen trotz des höheren Materialpreises zu einer wirtschaftlichen Alternative für Ringseildächer führen können. Zuerst aber werden die bekannten Vor‐ und Nachteile von CFK zusammengefasst und ein Überblick über bereits gebaute Tragwerke gegeben. Am Schluss wird der Prototyp eines Ringseildachs, der am Institut für Bauingenieurwesen der Technischen Universität Berlin gebaut wurde, vorgestellt. Spoke‐wheel cable roof with CFRP tension members While the automobile and aircraft industries take advantage of both of the two main characteristics of Carbon Fiber Reinforced Polymer (CFRP), high strength and low weight, usually only one advantage of CFRP, namely high strength, is relevant in the construction industry. When looking for types of structures where the low weight is also of particular use, large‐span, highly‐tensioned and pre‐stressed roof‐structures quickly come to mind. In this paper, the potential of CFRP tension members used in a spoke‐wheel cable roof is demonstrated by comparing a typical spoke‐wheel steel cable roof with a corresponding roof structure with CFRP tension members. The structural influence of carbon fibers with different properties is investigated. Cost estimation shows that the structural properties of CFRP tension members may lead to a cost efficient alternative for spoke‐wheel cable roofs despite of their higher material price. As an introduction the advantages and disadvantages of CFRP material are discussed and already existing CFRP cable structures are presented. At the end of the paper, a prototype of a spoke wheel CFRP cable roof, which was designed and built by the civil engineering institute of the Technical University of Berlin, is introduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.