This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods—random forest and gradient boosting and/or multinomial logistic regression—as implemented in the packages , , and . The results of 10–fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.
Soil moisture is a key environmental variable, important to e.g. farmers, meteorologists, and disaster management units. Here, we present a method to retrieve Surface Soil Moisture (SSM) from the Sentinel-1 satellites, which carry C-band Synthetic Aperture Radar (S-1 CSAR) sensors that provide the richest freely available SAR data source so far, unprecedented in accuracy and coverage. Our SSM retrieval method, adapting well-established change detection algorithms, builds the first globally deployable soil moisture observation dataset with 1km resolution. The paper provides an algorithm formulation to be operated in data cube architectures and High Performance Computing (HPC) environments. It includes the novel Dynamic Gaussian Upscaling (DGU) method for spatial upscaling of SAR imagery, harnessing its field-scale information and successfully mitigating effects from the SAR's high signal complexity. Also, a new regression-based approach for estimating the radar slope is defined, coping with Sentinel-1's inhomogeneity in spatial coverage. We employ the S-1 SSM algorithm on a 3yr S-1 data cube over Italy, obtaining a consistent set of model parameters and product masks, unperturbed by coverage discontinuities. An evaluation of therefrom generated S-1 SSM data, involving a 1km Soil Water Balance Model (SWBM) over Umbria, yields high agreement over plains and agricultural areas, with low agreement over forests and strong topography. While positive biases during the growing season are detected, excellent capability to capture small-scale soil moisture changes as from rainfall or irrigation is evident. The S-1 SSM is currently in preparation towards operational product dissemination in the Copernicus Global Land Service (CGLS).
Crop monitoring is of great importance for e.g., yield prediction and increasing water use efficiency. The Copernicus Sentinel-1 mission operated by the European Space Agency provides the opportunity to monitor Earth’s surface using radar at high spatial and temporal resolution. Sentinel-1’s Synthetic Aperture Radar provides co- and cross-polarized backscatter, enabling the calculation of microwave indices. In this study, we assess the potential of Sentinel-1 VV and VH backscatter and their ratio VH/VV, the cross ratio (CR), to monitor crop conditions. A quantitative assessment is provided based on in situ reference data of vegetation variables for different crops under varying meteorological conditions. Vegetation Water Content (VWC), biomass, Leaf Area Index (LAI) and height are measured in situ for oilseed-rape, corn and winter cereals at different fields during two growing seasons. To quantify the sensitivity of backscatter and microwave indices to vegetation dynamics, linear and exponential models and machine learning methods have been applied to the Sentinel-1 data and in situ measurements. Using an exponential model, the CR can account for 87% and 63% of the variability in VWC for corn and winter cereals. In oilseed-rape, the coefficient of determination ( R 2 ) is lower ( R 2 = 0.34) due to the large difference in VWC between the two growing seasons and changes in vegetation structure that affect backscatter. Findings from the Random Forest analysis, which uses backscatter, microwave indices and soil moisture as input variables, show that CR is by and large the most important variable to estimate VWC. This study demonstrates, based on a quantitative analysis, the large potential of microwave indices for vegetation monitoring of VWC and phenology.
Soil moisture is a key environmental variable, important to e.g., farmers, meteorologists, and disaster management units. We fuse surface soil moisture (SSM) estimates from spatio-temporally complementary radar sensors through temporal filtering of their joint signal and obtain a kilometre-scale, daily soil water content product named SCATSAR-SWI. With 25 km Metop ASCAT SSM and 1 km Sentinel-1 SSM serving as input, the SCATSAR-SWI is globally applicable and achieves daily full coverage over operated areas. We employ a near-real-time-capable SCATSAR-SWI algorithm on a fused 3 year ASCAT-Sentinel-1-SSM data cube over Italy, obtaining a consistent set of model parameters, unperturbed by coverage discontinuities. An evaluation of a therefrom generated SCATSAR-SWI dataset, involving a 1 km Soil Water Balance Model (SWBM) over Umbria, yields comprehensively high agreement with the reference data (median R = 0.61 vs. in situ; 0.71 vs. model; 0.83 vs. ASCAT SSM). While the Sentinel-1 signal is attenuated to some extent, the ASCAT's signal dynamics are fully transferred to the SCATSAR-SWI and benefit from the Sentinel-1 parametrisation. Using the SM2RAIN approach, the SCATSAR-SWI shows excellent capability to reproduce 5 day-accumulated rainfall over Italy, with R = 0.89 against observed rainfall. The SCATSAR-SWI is currently in preparation towards operational product dissemination in the Copernicus Global Land Service (CGLS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.