In this work, a new two-point method for water-fat imaging is described and explored. It generalizes existing two-point methods by eliminating some of the restrictions that these methods impose on the choice of echo times. Thus, the new two-point method promises to provide more freedom in the selection of protocol parameters and to reach higher scan efficiency. Its performance was studied theoretically and was evaluated experimentally in abdominal imaging with a multigradient-echo sequence. While depending on the choice of echo times, it is generally found to be favorable compared to existing two-point methods. Notably, water images with higher spatial resolution and better signal-to-noise ratio were attained with it in single breathholds at 3.0 T and 1.5 T, respectively. The use of more accurate spectral models of fat is shown to substantially reduce observed variations in the extent of fat suppression. The acquisition of in-and opposedphase images is demonstrated to be replaceable by a synthesis from water and fat images. The new two-point method is finally also applied to autocalibrate a multidimensional eddy current correction and to enhance the fat suppression achieved with three-point methods in this way, especially toward the edges of larger field of views. Magn Reson Med 65:96-107, 2011. V C 2010 Wiley-Liss, Inc. Key words: water-fat separation; fat suppression; Dixon methods; multiecho acquisitions; abdominal imaging; eddy currentsAs hyperintense signal from fat may obscure underlying pathology, its partial or complete suppression is a basic requirement in various applications of magnetic resonance imaging. Its characteristics result from the comparatively short relaxation times and large chemical shifts of the dominant methylene protons and serve as the basis for its elimination.Fat suppression is often an integral part of the acquisition. Popular methods include short-tau inversion recovery, which exploits the specific relaxation times, and selective saturation, which relies on the specific chemical shifts (1,2). However, these methods all have individual drawbacks, such as longer scan times, lower signalto-noise ratio (SNR), higher specific absorption rate, or less tolerance to field inhomogeneities. Postponing the separation of water and fat signals until the reconstruction allows avoiding most of these disadvantages. So-called Dixon methods perform for this purpose measurements at different echo times to encode the chemical shift (3). Besides fat suppression, they also permit efficient water-fat imaging, providing additional diagnostic information of relevance to selected applications.Several Dixon methods have been proposed over the last two decades (4). Apart from different strategies for the separation, they are mainly characterized by the number of echoes, or points, that they sample, and by the constraints that they impose on the echo times. We focus in this work on two-and three-point methods, as multipoint methods are usually very similar to threepoint methods, and one-point methods are gene...
Purpose To investigate the feasibility of using spectral photon-counting computed tomography (CT) to differentiate between gadolinium-based and nonionic iodine-based contrast material in a colon phantom by using the characteristic k edge of gadolinium. Materials and Methods A custom-made colon phantom was filled with nonionic iodine-based contrast material, and a gadolinium-filled capsule representing a contrast material-enhanced polyp was positioned on the colon wall. The colon phantom was scanned with a preclinical spectral photon-counting CT system to obtain spectral and conventional data. By fully using the multibin spectral information, material decomposition was performed to generate iodine and gadolinium maps. Quantitative measurements were performed within the lumen and polyp to quantitatively determine the absolute content of iodine and gadolinium. Results In a conventional CT section, absorption values of both contrast agents were similar at approximately 110 HU. Contrast material maps clearly differentiated the distributions, with gadolinium solely in the polyp and iodine in the lumen of the colon. Quantitative measurements of contrast material concentrations in the colon and polyp matched well with those of actual prepared mixtures. Conclusion Dual-contrast spectral photon-counting CT colonography with iodine-filled lumen and gadolinium-tagged polyps may enable ready differentiation between polyps and tagged fecal material. RSNA, 2016.
The feasibility of K-edge imaging using energy-resolved, photon-counting transmission measurements in X-ray computed tomography (CT) has been demonstrated by simulations and experiments. The method is based on probing the discontinuities of the attenuation coefficient of heavy elements above and below the K-edge energy by using energy-sensitive, photon counting X-ray detectors. In this paper, we investigate the dependence of the sensitivity of K-edge imaging on the atomic number Z of the contrast material, on the object diameter D , on the spectral response of the X-ray detector and on the X-ray tube voltage. We assume a photon-counting detector equipped with six adjustable energy thresholds. Physical effects leading to a degradation of the energy resolution of the detector are taken into account using the concept of a spectral response function R(E,U) for which we assume four different models. As a validation of our analytical considerations and in order to investigate the influence of elliptically shaped phantoms, we provide CT simulations of an anthropomorphic Forbild-Abdomen phantom containing a gold-contrast agent. The dependence on the values of the energy thresholds is taken into account by optimizing the achievable signal-to-noise ratios (SNR) with respect to the threshold values. We find that for a given X-ray spectrum and object size the SNR in the heavy element's basis material image peaks for a certain atomic number Z. The dependence of the SNR in the high- Z basis-material image on the object diameter is the natural, exponential decrease with particularly deteriorating effects in the case where the attenuation from the object itself causes a total signal loss below the K-edge. The influence of the energy-response of the detector is very important. We observed that the optimal SNR values obtained with an ideal detector and with a CdTe pixel detector whose response, showing significant tailing, has been determined at a synchrotron differ by factors of about two to three. The potentially very important impact of scattered X-ray radiation and pulse pile-up occurring at high photon rates on the sensitivity of the technique is qualitatively discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.