The global wind power capacity continues to grow at a fast pace. However, the profit margins from wind power are being compressed in many countries. Thus, many wind farm owners seek to reduce their operational expenses, including those for maintenance work. In this study, an artificial intelligence-based condition monitoring and predictive maintenance framework for wind turbines is presented. The purpose of this framework is the automated early detection of operational faults in wind turbine systems and subsystems. The early detection of anomalies enables further diagnosis, condition-based maintenance and better planning of repairs. It can prevent consequential damage, lead to fewer turbine downtimes and extend the service lives of the monitored turbines. We present validation results from two onshore wind farms and demonstrate 97% accuracy for a 2-month detection horizon of developing fault events that require attention from maintenance staff.
Most wind turbines are remotely monitored 24/7 to allow for early detection of operation problems and developing damage. We present a new fault detection approach for vibration-monitored drivetrains that does not require any feature engineering. Our method relies on a simple model architecture to enable a straightforward implementation in practice. We propose to apply convolutional autoencoders for identifying and extracting the most relevant features from a broad continuous range of the spectrum in an automated manner, saving time and effort. We focus on the range of [0, 1000] Hz for demonstration purposes. A spectral model of the normal vibration response is learnt for the monitored component from past measurements. We demonstrate that the trained model can successfully distinguish damaged from healthy components and detect a damaged generator bearing and damaged gearbox parts from their vibration responses. Using measurements from commercial wind turbines and a test rig, we show that vibration-based fault detection in wind turbine drivetrains can be performed without the usual upfront definition of spectral features. Another advantage of the presented method is that a broad continuous range of the spectrum can be monitored instead of the usual focus on monitoring individual frequencies and harmonics. Future research should investigate the proposed method on more comprehensive datasets and fault types.
The operation and maintenance costs of wind parks make up a major fraction of a park's overall lifetime costs. They also include opportunity costs of lost revenue from avoidable power generation underperformance. We present a machine-learning based decision support method that minimizes these opportunity costs. By analyzing the stream of telemetry sensor data from the turbine operation, estimating highly accurate power reference relations and benchmarking, we can detect performance-related operational faults in a turbine- and site-specific manner. The most accurate power reference model is selected based on combinations of machine learning algorithms and regressor sets. Operating personnel can be alerted if a normal operating state boundary is exceeded. We demonstrate the performance fault detection method in a case study for a commercial grid-connected onshore wind turbine. Diagnosing a detected underperformance event, we find that the observed power generation deficiencies coincide with rotor blade misalignment related to low hydraulic pressure of the turbine's blade actuators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.