The role of nitric oxide (NO) in the pathogenesis of influenza virus-induced pneumonia in mice was investigated. Experimental influenza virus pneumonia was produced with influenza virus A/Kumamoto/Y5/67(H2N2). Both the enzyme activity of NO synthase (NOS) and mRNA expression of the inducible NOS were greatly increased in the mouse lungs; increases were mediated by interferon y. Excessive production of NO in the virus-infected lung was studied further by using electron spin resonance (ESR) spectroscopy. In vivo spin trapping with dithiocarbamate-iron complexes indicated that a significant amount of NO was generated in the virus-infected lung. Furthermore, an NO-hemoglobin ESR signal appeared in the virus-infected lung, and formation of NO-hemoglobin was significantly increased by treatment with superoxide dismutase and was inhibited by Nwmonomethyl-L-arginine (L-NMMA) administration. Immunohistochemistry with a specific anti-nitrotyrosine antibody showed intense staining of alveolar phagocytic cells such as macrophages and neutrophils and of intraalveolar exudate in the virus-infected lung. These results strongly suggest formation of peroxynitrite in the lung through the reaction of NO with 02-, which is generated by alveolar phagocytic cells and xanthine oxidase. In addition, administration of L-NMMA resulted in significant improvement in the survival rate of virus-infected mice without appreciable suppression of their antiviral defenses. On the basis of these data, we conclude that NO together with 02-which forms more reactive peroxynitrite may be the most important pathogenic factors in influenza virus-induced pneumonia in mice.
The pathogenicity offixed rabies virus strains for adult mice depends on the presence of an antigenic determinant on the viral glycoprotein. Two virus-neutralizing monoclonal antibodies have been used to identify this determinant. All pathogenic strains of fixed rabies virus bind to these antibodies and are neutralized by them, whereas nonpathogenic strains fail to react with these monoclonal antibodies and are not neutralized by them. Antigenic variants of the rabies virus with altered glycoprotein were selected by growing virus in the presence of one monoclonal antibody, 194-2. All variants that lost their ability to react with this antibody and an additional antibody, 248-8, were found to be nonpathogenic for adult mice. Analysis of tryptic peptides of the glycoproteins of pathogenic parent virus and nonpathogenic 'variants and the amino acid sequence of a specific variant tryptic peptide revealed that the change in pathogenicity corresponded to an amino acid substitution at position 333 of the glycoprotein molecule. The nucleotide sequence of the nonpathogenic variant glycoprotein gene contained a base change that confirmed the single amino acid substitution in the tryptic peptide replacing arginine-333 in the parental glycoprotein. We conclude that arginine-333 is essential for the integrity of an antigenic determinant and for the ability of rabies viruses to produce lethal infection in adult mice.
The purpose of this study was to investigate the induction of inducible nitric oxide synthase (iNOS) mRNA in the brain tissue of rats and mice under the following experimental conditions: in rats infected with borna disease virus and rabies virus, in mice infected with herpes simplex virus, and in rats after the induction of experimental allergic encephalitis. The results showed that iNOS mRNA, normally nondetectable in the brain, was present in animals after viral infection or after induction of experimental allergic encephalitis. The induction of iNOS mRNA coincided with the severity of clinical signs and in some cases with the presence of inflammatory cells in the brain. The results indicate that nitric oxide produced by cells induced by iNOS may be the toxic factor accounting for cell damage and this may open the door to approaches to the study of the pathogenesis of neurological diseases.The mechanisms involved in the development of central nervous system (CNS) lesions are readily understood only in those pathological conditions in which there is evidence that a virus destroys its target cell as a direct cytopathic consequence of viral replication (e.g., polio virus or other neurotrophic viruses; refs. 1 and 2). However, the effector mechanisms involved in tissue damage associated with a far wider variety of viral infections of the CNS, involving such viruses as the measles and rubella viruses as well as human immunodeficiency virus 1, are unclear. Likewise, the mediators responsible for the CNS damage associated with chronic neurologic diseases such as multiple sclerosis remain the subject of speculation. Interestingly, morphologic analyses have revealed that lesions in affected brain tissues are frequently surrounded by infiltrating inflammatory cell populations. Although the precise role that these cells play in CNS pathology is the subject of ongoing investigation, previous studies have focused on the ability of leukocyte populations to generate proinflammatory cytokines (e.g., interleukin 1, tumor necrosis factor, etc.), neurotoxins (e.g., quinolinic acid), or reactive oxygen intermediates (3). Recently, increased attention has focused on the possibility that reactive nitrogen intermediates (NOI) generated by a family of cytochrome P-450 reductase-like enzymes, the nitric oxide synthases (NOS), directly damage host tissues in a diverse array of pathogenic states (4).To date, at least three NOS genes have been cloned and characterized, and these have been provisionally categorized on the basis of their sensitivity to regulation by Ca2+ transients (4). In this schema, NOS forms that bind calmodulin in a reversible Ca2+-dependent manner are termed the constitutive forms of NOS, and those forms of the enzyme that bind calmodulin tightly at resting [Ca2+] are termed inducible NOSs (iNOSs). After the addition of rapid-acting agonists, the constitutive NOS system generates only low levels of the NOI, nitric oxide (NO), whereas the iNOS system begins to generate NO several hours after exposure to cyto...
The sequence Lys-Ser-Pro-Val-Pro-Lys-SerPro-Val-Glu-Glu-Lys-Gly repeats six times serially in the human midsized neuroframent (NF) protein (NF-M). To establish whether Lys-Ser-Pro-Val(Ala) is the major site for in vivo NF phosphorylation, peptides based on the human NF-M repeat were synthesized and chemically phosphorylated. These synthetic peptides were probed with 515 monoclonal antibodies (mAbs) that were raised to, and distinguished, several differentially phosphorylated forms of NF proteins. Studies with 95 of those mAbs that recognized the peptides before and after chemical phosphorylation demonstrated that a highly immunogenic epitope shared by the peptides is present in NFs from all species tested, including invertebrates. This suggests the phylogenetic conservation of a major NF phosphorylation site. Lastly, a cross-reactive antigenic determinant shared by the peptides and the major NF phosphorylation site was shown to exist in neurofibrillary tangles of patients with Alzheimer disease as well as in two neuron-specific microtubule-associated proteins (MAPs-i.e., MAP2 and tau.
A recombinant rabies virus (RV) carrying two identical glycoprotein (G) genes (SPBNGA-GA) was constructed and used to determine the effect of RV G overexpression on cell viability and immunity. Immunoprecipitation analysis and flow cytometry showed that tissue culture cells infected with SPBNGA-GA produced, on average, twice as much RV G as cells infected with RV carrying only a single RV G gene (SPBNGA). The overexpression of RV G in SPBNGA-GA-infected NA cells was paralleled by a significant increase in caspase 3 activity followed by a marked decrease in mitochondrial respiration, neither of which was observed in SPBNGA-infected cells. Furthermore, fluorescence staining and confocal microscopy revealed an increased extent of apoptosis and markedly reduced neurofilament and F actin in SPBNGA-GA-infected primary neuron cultures compared with neuronal cells infected with SPBNGA, supporting the concept that RV G or motifs of the RV G gene trigger the apoptosis cascade. Mice immunized with SPBNGA-GA showed substantially higher antibody titers against the RV G and against the nucleoprotein than SPBNGA-immunized mice, suggesting that the speed or extent of apoptosis directly determines the magnitude of the antibody response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.