An intense laser pulse in a plasma can accelerate electrons [1][2][3][4] to GeV energies in centimetres [5][6][7] . Transverse betatron motion 8,9 in the plasma wake results in X-ray photons with an energy that depends on the electron energy, oscillation amplitude and frequency of the betatron motion [10][11][12] . Betatron X-rays from laser-accelerator electrons have hitherto been limited to spectra peaking between 1 and 10 keV (ref. 13). Here we show that the betatron amplitude is resonantly enhanced when electrons interact with the rear of the laser pulse 14,15 . At high electron energy, resonance occurs when the laser frequency is a harmonic of the betatron frequency, leading to a significant increase in the photon energy. 10 X-ray pulses from synchrotron sources have become immensely useful tools for investigating the structure of matter 17 , which has led to a huge international effort to construct light sources for many different scientific and technological applications. Synchrotrons are usually based on radio-frequency (RF) accelerating cavities that are limited to fields of 10-100 MV m −1 because of electrical breakdown, which results in very large and expensive devices.High-power lasers, on the other hand, have led to the development of many new areas of science, as diverse as inertial confinement fusion and laboratory astrophysics to the study of warm dense matter. However, they now have the potential to transform accelerator and light source technology. In the late 1970s, Tajima and Dawson 1 proposed harnessing the ponderomotive force associated with intense laser fields to excite plasma waves and form wake-like structures 18 (as behind a boat) that travel with a velocity close to the speed of light, c. The electrostatic forces of these charge density structures can rapidly accelerate particles to very high energies 6 ; where momentum is gained analogous to a surfer riding an ocean wave. Recent progress in the development of laser wakefield accelerators (LWFAs) has enabled electron beams to be accelerated with unprecedented acceleration gradients 2-4 , three orders of magnitude higher than in RF cavities, thus reducing a 100 m long GeV accelerator to centimetres in length 6 . The LWFA can now produce high-quality electron beams with low emittance, ε n , of the order 1π mm mrad 19 , small energy spread 20 , δγ /γ 1%, where γ is the Lorenz factor, and high charge 4 , Q = 10-100 pC. At high laser intensities, in the so-called blowout regime 21 , the LWFA structure has an approximately spherical bubble shape with a radius of R ≈ 2 √ a 0 c/ω p , which is primarily determined by the normalized laser vector potential, a 0 = eA/m e c 2 and the plasma frequency, ω p = √ 4π n p e 2 /m e , where n p is the plasma density, e, the electron charge and m e , the electron mass 22 . The plasma wave is efficiently driven when the laser pulse duration is approximately a plasma period. Micrometre-long electron bunches that extend only a fraction of the plasma wavelength, λ p = 2πc/ω p , are self-injected and accelerate...
Progress in laser wakefield accelerators indicates their suitability as a driver of compact free-electron lasers (FELs). High brightness is defined by the normalized transverse emittance, which should be less than 1π mm mrad for an x-ray FEL. We report high-resolution measurements of the emittance of 125 MeV, monoenergetic beams from a wakefield accelerator. An emittance as low as 1.1±0.1π mm mrad is measured using a pepper-pot mask. This sets an upper limit on the emittance, which is comparable with conventional linear accelerators. A peak transverse brightness of 5×10¹⁵ A m⁻¹ rad⁻¹ makes it suitable for compact XUV FELs.
Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Plasma waves excited by intense laser beams can be harnessed to produce femtosecond duration bunches of electrons with relativistic energies. The very large electrostatic forces of plasma density wakes trailing behind an intense laser pulse provide field potentials capable of accelerating charged particles to high energies over very short distances, as high as 1 GeV in a few millimetres. The short length scale of plasma waves provides a means of developing very compact high-energy accelerators, which could form the basis of compact next-generation light sources with unique properties. Tuneable X-ray radiation and particle pulses with durations of the order of or less than 5 fs should be possible and would be useful for probing matter on unprecedented time and spatial scales. If developed to fruition this revolutionary technology could reduce the size and cost of light sources by three orders of magnitude and, therefore, provide powerful new tools to a large scientific community. We will discuss how a laser-driven plasma wakefield accelerator can be used to produce radiation with unique characteristics over a very large spectral range.
Self-injection in a laser-plasma wakefield accelerator is usually achieved by increasing the laser intensity until the threshold for injection is exceeded. Alternatively, the velocity of the bubble accelerating structure can be controlled using plasma density ramps, reducing the electron velocity required for injection. We present a model describing self-injection in the short-bunch regime for arbitrary changes in the plasma density. We derive the threshold condition for injection due to a plasma density gradient, which is confirmed using particle-in-cell simulations that demonstrate injection of subfemtosecond bunches. It is shown that the bunch charge, bunch length, and separation of bunches in a bunch train can be controlled by tailoring the plasma density profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.